A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanoparticles in plant resistance against bacterial pathogens: current status and future prospects. | LitMetric

Nanoparticles (NPs) serve immense roles in various fields of science. They have vastly upgraded conventional methods in the fields of agriculture and food sciences to eliminate growing threats of crop damage and disease, caused by various phytopathogens including bacteria, fungi, viruses, and some insects. Bacterial diseases resulted in mass damage of crops by adopting antibacterial resistance, which has proved to be a major threat leading to food scarcity. Therefore, numerous NPs with antibacterial potentials have been formulated to overcome the problem of antibiotic resistance alongside an increase in crop yield and boosting plant immunity. NPs synthesized through green synthesis techniques have proved to be more effective and environment-friendly than those synthesized via chemical methods. NPs exhibit great roles in plants ranging from enhanced crop yield to disease suppression, to targeted drug and pesticide deliveries inside the plants and acting as biosensors for pathogen detection. NPs serves major roles in disruption of cellular membranes, ROS production, altering of DNA and protein entities and changing energy transductions. This review focuses on the antibacterial effect of NPs on several plant bacterial pathogens, mostly, against Pseudomonas syringe, Ralstonia solanacearum, Xanthomonas axonopodis, Clavibacter michiganensisand Pantoea ananatis both in vivo and ex vivo, thereby minimizing their antibacterial resistance and enhancing the plants acquired immunity. Therefore, NPs present a safer and more reliable bactericidal activity against various disease-causing bacteria in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-023-08914-3DOI Listing

Publication Analysis

Top Keywords

bacterial pathogens
8
antibacterial resistance
8
crop yield
8
immunity nps
8
nps
7
nanoparticles plant
4
resistance
4
plant resistance
4
resistance bacterial
4
pathogens current
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!