Properties of cellulase from Trichoderma viride.

Folia Microbiol (Praha)

Published: October 1979

Cellulase produced by Trichoderma viride acted on carboxymethyl cellulose with a Km of 4.9 g substrate per litre, showing a pH optimum at 4.5 and a temperature optimum at 55 degrees C. Ag+, Hg2+, Zn2+, Cu2+ and N3- were inhibitory..

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02926459DOI Listing

Publication Analysis

Top Keywords

trichoderma viride
8
properties cellulase
4
cellulase trichoderma
4
viride cellulase
4
cellulase produced
4
produced trichoderma
4
viride acted
4
acted carboxymethyl
4
carboxymethyl cellulose
4
cellulose substrate
4

Similar Publications

The increasing demand for sustainable alternatives to conventional antifungal agents has prompted extensive research into the antifungal properties of plant essential oils (EOs). This study investigates the use of EOs mixture (Origanum vulgare, Moringa oleifera, and Cinnamomum verum) for controlling fungal deterioration in wall paintings at the archaeological Youssef Kamal Palace in Nag Hammadi, Egypt. Fungal isolates were collected from deteriorated wall paintings and identified using phenotypic and genotypic analyses.

View Article and Find Full Text PDF

The primary aim of this research was to study the effectiveness of various strains of antagonist microorganisms and biological preparations against , in addition to their impact on the quality of tomato fruits and crop structure. Four microorganism strains and three registered environmentally safe nematicides were used in the experiment presented herein. The results showed that the strains F-22BK/6 and F-22BK/4 had the greatest biological efficacy, reducing the number of galls on tomato plants by 91.

View Article and Find Full Text PDF

The rising incidence of fungal infections, compounded by the emergence of severe antifungal resistance, has resulted in an urgent need for innovative antifungal therapies. We developed an antifungal protein-based formulation as a topical antifungal agent by combining an artificial lipidated chitin-binding domain of antifungal chitinase (LysM-lipid) with recently developed ionic liquid-in-oil microemulsion formulations (MEFs). Our findings demonstrated that the lipid moieties attached to LysM and the MEFs effectively disrupted the integrity of the stratum corneum in a mouse skin model, thereby enhancing the skin permeability of the LysM-lipids.

View Article and Find Full Text PDF

Fungal pathogens cause over a billion human infections annually, leading to more than 1.6 million deaths each year. The scarcity of available antifungal drugs intensifies the public health threat posed by human pathogenic fungal infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!