Benzo[1,2-b:4,5-b']dithiophene (BDT) and its derivatives have made important contributions to constructing high-performance polymers. However, it is difficult to clarify the real role of donor units due to the interference of strong electronegativity and crystallinity of acceptor units in the D-A copolymer. Here, we design a cyclohexane-substituted dithieno[3,2-f:2',3'-h]quinoxaline (DTQ)-based acceptor unit with successfully destroyed crystallinity and charge transport. Three donor-dominated materials PQH-BTF, PQH-BTCl, and PQH-BFCl are obtained. It is found that the materials exhibit obvious differences after destroying the crystallization and charge transport of the acceptor unit, and the real role of different two-dimensional donor units in designed polymers is confirmed. The backbone BDF exhibits much stronger intermolecular interactions compared to BDT, while the side chain ThF demonstrates a higher crystallization capacity than that of ThCl. More interestingly, it can be inferred that the molecular backbone is likely to construct miscible-phase crystallization (D-A crystal) while the side chain tends to demonstrate a capacity for pure-phase crystallization (D-D crystal) in a 2D donor system. Different crystallization leads to different exciton transport: pure-phase crystallization is conducive to the reduction of trap-assisted recombination, while miscible crystallization is beneficial to the reduction of bimolecular recombination. This work can help to choose donor units more accurately when preparing D-A copolymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c02999 | DOI Listing |
Nutrients
December 2024
Alive & Thrive, FHI 360 Global Nutrition, Hanoi 11022, Vietnam.
Background And Objectives: Donor human milk (DHM) from a human milk bank (HMB) is used to feed low-birthweight (LBW) and preterm infants when mothers cannot provide their own breastmilk. The misuse of DHM could interfere with mothers' breastmilk and weaken breastfeeding efforts. This study aimed to identify factors behind prolonged DHM usage during the first six years of Vietnam's first HMB.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia.
In recent years, the design and synthesis of high-performing conjugated materials for the application in organic photovoltaics (OPVs) have achieved lab-scale devices with high power conversion efficiency. However, most of the high-performing materials are still synthesised using complex multistep procedures, resulting in high cost. For the upscaling of OPVs, it is also important to focus on conjugated polymers that can be made via fewer simple synthetic steps.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China.
Luminescent gold(I) compounds have attracted intensive attention due to anticipated strong spin-orbit coupling (SOC) resulting from heavy atom effect of gold atoms. However, some mononuclear gold(I) compounds are barely satisfactory. Here, we unveil that low participation of gold in transition-related orbitals, caused by 6s-π symmetry mismatch, is the cause of low SOCs in monogold(I) compounds.
View Article and Find Full Text PDFCureus
December 2024
Immunohematology and Blood Transfusion, Kalinga Institute of Medical Sciences, Bhubaneswar, IND.
Background and objective RhD variants show altered D antigen expression, affecting their serological detection. Proper identification is crucial due to potential anti-D antibody formation. This study aimed to retrospectively analyze the frequency and characteristics of D variant cases encountered during RhD typing in both blood donors and recipients and the transfusion implications.
View Article and Find Full Text PDFACS Nano
January 2025
Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
Strategies to acquire high-efficiency luminogens that emit in the second near-infrared (NIR-II, 1000-1700 nm) range are still rare due to the impediment of the energy gap law. Herein, a feasible strategy is pioneered by installing large-volume encumbrances in a confined space to intensify the repulsive interactions arising from overlapping electron densities. The experimental results, including smaller coordinate displacement, reduced reorganization energy, and suppressed internal conversion, demonstrate that the repulsive interactions assist in the inhibition of radiationless deactivation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!