AI Article Synopsis

Article Abstract

This work is the first attempt to prepare NdCaUPO monazite-cheralite with 0 < ≤ 0.1 by a wet chemistry method. This method relies on the precipitation under hydrothermal conditions ( = 110 °C for four days) of the NdCaUPO·HO rhabdophane precursor, followed by its thermal conversion for 6 h at 1100 °C in air or Ar atmosphere. The optimized synthesis protocol led to the incorporation of U and Ca in the rhabdophane structure. After heating at 1100 °C for 6 h in air, single-phase monazite-cheralite samples were obtained. However, α-UPO was identified as a secondary minor phase in the samples heated under Ar atmosphere. The U speciation in the samples converted in an oxidising atmosphere was carefully characterized using synchrotron radiation by combining HERFD-XANES and XRD. These results showed the presence of a minor secondary phase containing hexavalent uranium and phosphate with a stoichiometry of U : P = 0.78. This highly labile uranyl phosphate phase incorporated 21 mol% of the uranium initially precipitated with the rhabdophane precursor. This phase was completely removed by a washing protocol. Thus, single-phase monazite-cheralite was obtained through the wet chemistry route described in this work with a maximum U loading of = 0.08.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3dt03251eDOI Listing

Publication Analysis

Top Keywords

wet chemistry
8
rhabdophane precursor
8
1100 °c
8
°c air
8
single-phase monazite-cheralite
8
incorporation uiv
4
monazite-cheralite
4
uiv monazite-cheralite
4
monazite-cheralite ceramics
4
ceramics oxidizing
4

Similar Publications

Thermal modification is an environmentally friendly process that does not utilize chemical agents to enhance the stability and durability of wood. The use of thermally modified wood results in a significantly extended lifespan compared with untreated wood, with minimal maintenance requirements, thereby reducing the carbon footprint. This study examines the impact of varying modification temperatures (160, 180, and 210 °C) on the lignin of spruce wood using the ThermoWood process and following the accelerated aging of thermally modified wood.

View Article and Find Full Text PDF

The development of greener substitutes for plastics is gaining massive importance in today's society. This also involves the medical field, where disposable materials are used to grant sterility. Here, a novel protocol using only a water-based solvent for the preparation of bio-based composite foams of actual β-chitin and collagen type I is presented.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF), also known as VEGF-A, has been linked to various diseases, such as wet age-related macular degeneration (wAMD) and cancer. Even though there are VEGF inhibitors that are currently commercially available in clinical applications, severe adverse effects have been associated with these treatments. There is still a need to develop novel VEGF-based therapeutics against these VEGF-related diseases.

View Article and Find Full Text PDF

Recycling end-of-life wind turbines poses a significant challenge due to the increasing number of turbines going out of use. After many years of operation, turbines lose their functional properties, generating a substantial amount of composite waste that requires efficient and environmentally friendly processing methods. Wind turbine blades, in particular, are a problematic component in the recycling process due to their complex material composition.

View Article and Find Full Text PDF

Coffee Pulp from Azores: A Novel Phytochemical-Rich Food with Potential Anti-Diabetic Properties.

Foods

January 2025

Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.

Coffee pulp, a by-product of wet coffee processing, shows significant potential in the food and health domains, but its real applications remain underexplored. This work investigated the chemical composition and bioactive properties of coffee pulp from São Miguel Island (Azores, Portugal). The studied coffee pulp exhibited high fiber content (52% dw), mostly insoluble; notable mineral levels (10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!