Using machine learning in the prediction of symptomatic venous thromboembolism following ankle fracture.

Foot Ankle Surg

Foot & Ankle Research and Innovation Laboratory (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Foot and Ankle Division, Department of Orthopaedic Surgery, Massachusetts General Hospital, Newton Wellesley Hospital, Harvard Medical School, Boston, MA, USA.

Published: February 2024

Background: Venous thromboembolism (VTE) is a major cause of morbidity and mortality in the trauma setting, and both prediction and prevention of VTE have long been a concern for healthcare providers in orthopedic surgery. The purpose of this study was to evaluate the use of novel statistical analysis and machine-learning in predicting the risk of VTE and the usefulness of prophylaxis following ankle fractures.

Methods: The medical profiles of 16,421 patients with ankle fractures were screened retrospectively for symptomatic VTE. In total, 238 patients sustaining either surgical or nonsurgical treatment for ankle fracture with subsequently confirmed VTE within 180 days following the injury were placed in the case group. Alternatively, 937 patients who sustained ankle fractures managed similarly but had no documented evidence of VTE were randomly chosen as the control group. Individuals from both the case and control populations were also divided into those who had received VTE prophylaxis and those who had not. Over 110 variables were included. Conventional statistics and machine learning methods were used for data analysis.

Results: Patients who had a motor vehicle accident, surgical treatment, increased hospital stay, and were on warfarin were shown to have a higher incidence of VTE, whereas patients who were on statins had a lower incidence of VTE. The highest Area Under the Receiver Operating Characteristic Curves (AUROC) showing the performance of our machine learning approach was 0.88 with 0.94 sensitivity and 0.36 specificity. The most balanced performance was seen in a model that was trained using selected variables with 0.86 AUROC, 0.75 sensitivity, and 0.85 specificity.

Conclusion: By using machine learning, this study successfully pinpointed several predictive factors linked to the occurrence or absence of VTE in patients who experienced an ankle fracture. Training these algorithms using larger, more granular, and multicentric data will further increase their validity and reliability and should be considered the standard for the development of such algorithms.

Level Of Evidence: Case-Control study - 3.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fas.2023.10.003DOI Listing

Publication Analysis

Top Keywords

machine learning
16
ankle fracture
12
vte
10
venous thromboembolism
8
vte prophylaxis
8
ankle fractures
8
incidence vte
8
vte patients
8
ankle
6
patients
6

Similar Publications

Background: Epidemiological research on the association between heavy metals and congestive heart failure (CHF) in individuals with abnormal glucose metabolism is scarce. The study addresses this research gap by examining the link between exposure to heavy metals and the odds of CHF in a population with dysregulated glucose metabolism.

Method: This cross-sectional study includes 7326 patients with diabetes and prediabetes from the National Health and Nutrition Examination Survey from 2011 to 2018.

View Article and Find Full Text PDF

Background: Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies.

Methods: We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis.

View Article and Find Full Text PDF

Background: Urinary tract infection (UTI) is a frequent health-threatening condition. Early reliable diagnosis of UTI helps to prevent misuse or overuse of antibiotics and hence prevent antibiotic resistance. The gold standard for UTI diagnosis is urine culture which is a time-consuming and also an error prone method.

View Article and Find Full Text PDF

A machine learning model accurately identifies glycogen storage disease Ia patients based on plasma acylcarnitine profiles.

Orphanet J Rare Dis

January 2025

Laboratory of Metabolic Diseases, Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Postbus, Groningen, 30001 - 9700 RB, the Netherlands.

Background: Glycogen storage disease (GSD) Ia is an ultra-rare inherited disorder of carbohydrate metabolism. Patients often present in the first months of life with fasting hypoketotic hypoglycemia and hepatomegaly. The diagnosis of GSD Ia relies on a combination of different biomarkers, mostly routine clinical chemical markers and subsequent genetic confirmation.

View Article and Find Full Text PDF

Background: Steroid-induced osteonecrosis of the femoral head (SIONFH) is a universal hip articular disease and is very hard to perceive at an early stage. The understanding of the pathogenesis of SIONFH is still limited, and the identification of efficient diagnostic biomarkers is insufficient. This research aims to recognize and validate the latent exosome-related molecular signature in SIONFH diagnosis by employing bioinformatics to investigate exosome-related mechanisms in SIONFH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!