Experimental determination of solvation free energy of protons in non-protic ionic liquids using Raman spectroscopy.

Phys Chem Chem Phys

University of Liege, Laboratory of Mass Spectrometry - Vibrational Spectroscopy, Allee du 6 aout 11 (Bat B6B), 4020 Liege, Belgium.

Published: January 2024

Room temperature imidazolium-based ionic liquids (ILs) often present super-acidity, which can be characterized by the free energy of solvation of protons in ILs, Δ°(H). It can be derived from the consensus value of the free energy of solvation of protons in water if the free energy of transfer of protons from water to the ILs, Δ°(H), is determined. However, the experimental determination of the free energy of transfer of protons relies on extra-thermodynamic hypotheses, as protons cannot be transferred from one solvent to another without a counterion. Here we propose to measure the Hammett acidity functions, which relies on the protonation equilibrium of specific pH-reporters, for the first time by Raman spectroscopy directly in acidic solution of 2,6-dichloro-4-nitroaniline in three 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ILs. We demonstrated that the Δ°(H) obtained by Raman spectroscopy and UV-visible spectroscopy were identical in the same 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Also, when the butyl substituent is replaced by a longer alkyl chain such as an octyl chain, the acidity in the IL is lowered. The free energies of solvation are calculated in four ILs from Raman spectroscopy data recorded directly in the acidic solutions. These values confirmed that the protons are less solvated in ILs than in water, hence their acidity. Raman spectroscopy also enables determination of the solvation number of the proton in imidazolium-based bis(trifluoromethylsulfonyl)imide ILs. The benefits of implementing Raman spectroscopy to determine the Hammett acidity function in ILs using a non-colored pH-reporter and in colored media are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp04741eDOI Listing

Publication Analysis

Top Keywords

raman spectroscopy
24
free energy
20
experimental determination
8
determination solvation
8
ionic liquids
8
ils
8
energy solvation
8
solvation protons
8
ils Δ°h
8
protons water
8

Similar Publications

Graphene, a two-dimensional material featuring densely packed sp-hybridized carbon atoms arranged in a honeycomb lattice, has revolutionized material science. Laser-induced graphene (LIG) represents a breakthrough method for producing graphene from both commercial and natural precursors via direct laser writing, offering advantages such as simplicity, efficiency, and cost-effectiveness. This study demonstrates a novel approach to synthesize a composite material exclusively from a porous organic polymer (POP) by direct femtosecond laser writing on a compressed imide-linked porous organic polymer substrate.

View Article and Find Full Text PDF

Aptamer-Antibody Birecognized Sandwich SERRS Biosensor in Accurate and Rapid Identification of Intraoperative Parathyroid Hormone.

Anal Chem

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, Cancer Center and Department of Breast and Thyroid Surgery, Department of Ultrasound, Xiang'an Hospital of Xiamen University, School of Medicine, Laboratory Animal Center Xiamen University, Xiamen University, Xiamen 361005, China.

With the increasing incidence of thyroid cancer worldwide and the increasing demand for surgery, the risk of parathyroid injury is also increasing, which will lead to postoperative hypoparathyroidism (HP) and hypocalcemia. In order to improve the quality of life of patients after surgery, there is an urgent need to develop a novel platform that can identify the parathyroid gland immediately during surgery. The parathyroid gland promotes the increase of blood calcium concentration by secreting parathyroid hormone (PTH).

View Article and Find Full Text PDF

Optimization of the manufacturing process based on scientific evidence is essential for quality control of active pharmaceutical ingredients. Real-time monitoring can ensure the production of stable quality crystals in the crystallization process. Raman spectroscopy is an attractive tool for pharmaceutical quality evaluation and process analytical technology because of its ability to analyze samples non-destructively and rapidly.

View Article and Find Full Text PDF

Emerging contaminants (ECs) pose great challenges to water treatment technology due to their complexity and high harm. In this paper, the method of dielectric barrier discharge (DBD) plasma coupled with iron-based catalyst (FeNC) activating periodate (PI) was first designed for ECs removal. The ingenious introduction of FeNC not only promotes the Fenton-like reaction of DBD system but also reduces the PI activation energy barrier and accelerates the electron shuttle between PI and pollutants.

View Article and Find Full Text PDF

Accurate operando measurement of AlGaN/GaN HEMTs channel temperature and optimization of thermal design.

Nanotechnology

January 2025

Electronic Sci.&Eng., Xi'an Jiaotong University, 28 Xianning West Road,Beilin District, Xi 'an, Shaanxi Province, China, Xi'an, 710049, CHINA.

The accurate estimation of the temperature distribution of the GaN based power devices and optimization of the device structure is of great significance to possibly solve the self-heating problem, which hinders the further enhancement of the device performances. We present here the operando temperature measurement with high spatial resolution using Raman spectroscopy of AlGaN/GaN high electron mobility transistors (HEMTs) with different device structures and explore the optimization of the device thermal design accordingly. The lateral and depth temperature distributions of the single-finger HEMT were characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!