A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bacteria Colonies Modify Their Shear and Compressive Mechanical Properties in Response to Different Growth Substrates. | LitMetric

Bacteria build multicellular communities termed biofilms, which are often encased in a self-secreted extracellular matrix that gives the community mechanical strength and protection against harsh chemicals. How bacteria assemble distinct multicellular structures in response to different environmental conditions remains incompletely understood. Here, we investigated the connection between bacteria colony mechanics and the colony growth substrate by measuring the oscillatory shear and compressive rheology of bacteria colonies grown on agar substrates. We found that bacteria colonies modify their own mechanical properties in response to shear and uniaxial compression in a manner that depends on the concentration of agar in their growth substrate. These findings highlight that mechanical interactions between bacteria and their microenvironments are an important element in bacteria colony development, which can aid in developing strategies to disrupt or reduce biofilm growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653398PMC
http://dx.doi.org/10.1021/acsabm.3c00907DOI Listing

Publication Analysis

Top Keywords

bacteria colonies
12
bacteria
8
colonies modify
8
shear compressive
8
mechanical properties
8
properties response
8
substrates bacteria
8
bacteria colony
8
growth substrate
8
modify shear
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!