L-Glycosidase-Cleavable Natural Glycans Facilitate the Chemical Synthesis of Correctly Folded Disulfide-Bonded D-Proteins.

Angew Chem Int Ed Engl

Department of Hematology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China.

Published: February 2024

D-peptide ligands can be screened for therapeutic potency and enzymatic stability using synthetic mirror-image proteins (D-proteins), but efficient acquisition of these D-proteins can be hampered by the need to accomplish their in vitro folding, which often requires the formation of correctly linked disulfide bonds. Here, we report the finding that temporary installation of natural O-linked-β-N-acetyl-D-glucosamine (O-GlcNAc) groups onto selected D-serine or D-threonine residues of the synthetic disulfide-bonded D-proteins can facilitate their folding in vitro, and that the natural glycosyl groups can be completely removed from the folded D-proteins to afford the desired chirally inverted D-protein targets using naturally occurring O-GlcNAcase. This approach enabled the efficient chemical syntheses of several important but difficult-to-fold D-proteins incorporating disulfide bonds including the mirror-image tumor necrosis factor alpha (D-TNFα) homotrimer and the mirror-image receptor-binding domain of the Omicron spike protein (D-RBD). Our work establishes the use of O-GlcNAc to facilitate D-protein synthesis and folding and proves that D-proteins bearing O-GlcNAc can be good substrates for naturally occurring O-GlcNAcase.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202313640DOI Listing

Publication Analysis

Top Keywords

disulfide-bonded d-proteins
8
disulfide bonds
8
naturally occurring
8
occurring o-glcnacase
8
d-proteins
7
l-glycosidase-cleavable natural
4
natural glycans
4
glycans facilitate
4
facilitate chemical
4
chemical synthesis
4

Similar Publications

L-Glycosidase-Cleavable Natural Glycans Facilitate the Chemical Synthesis of Correctly Folded Disulfide-Bonded D-Proteins.

Angew Chem Int Ed Engl

February 2024

Department of Hematology, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, and Division of Life Sciences and Medicine, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230001, China.

D-peptide ligands can be screened for therapeutic potency and enzymatic stability using synthetic mirror-image proteins (D-proteins), but efficient acquisition of these D-proteins can be hampered by the need to accomplish their in vitro folding, which often requires the formation of correctly linked disulfide bonds. Here, we report the finding that temporary installation of natural O-linked-β-N-acetyl-D-glucosamine (O-GlcNAc) groups onto selected D-serine or D-threonine residues of the synthetic disulfide-bonded D-proteins can facilitate their folding in vitro, and that the natural glycosyl groups can be completely removed from the folded D-proteins to afford the desired chirally inverted D-protein targets using naturally occurring O-GlcNAcase. This approach enabled the efficient chemical syntheses of several important but difficult-to-fold D-proteins incorporating disulfide bonds including the mirror-image tumor necrosis factor alpha (D-TNFα) homotrimer and the mirror-image receptor-binding domain of the Omicron spike protein (D-RBD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!