Phase Control and Singlet Energy Transfer Enabled by Trimethylamine Modified Boron Dipyrromethene for Stable CsPbBr Quantum Wells.

Angew Chem Int Ed Engl

Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China.

Published: February 2024

AI Article Synopsis

  • The phase distribution and organic spacer cations are crucial for the performance and stability of perovskite quantum wells (QWs).
  • A new strategy using sterically hindered ligands, specifically the BDP-TMA ligand, effectively controls phase distribution and stabilizes CsPbBr QWs.
  • BDP-TMA-CsPbBr shows significant stability against environmental conditions and offers unique properties like dynamic fluorescence control, which opens possibilities for applications in temperature sensing and anti-counterfeiting technologies.

Article Abstract

The phase distribution and organic spacer cations play pivotal roles in determining the emission performance and stability of perovskite quantum wells (QWs). Here, we propose a universal molecular regulation strategy to tailor phase distribution and enhance the stability of CsPbBr QWs. The capability of sterically hindered ligands with formidable surface binding groups is underscored in directing CsPbBr growth and refining phase distribution. With trimethylamine modified boron dipyrromethene (BDP-TMA) ligand as a representative, the BDP-TMA driven can precisely control phase distribution and passivate defects of CsPbBr . Notably, BDP-TMA acts as a co-spacer organic entity in obtained BDP-TMA-CsPbBr , facilitating efficient singlet energy transfer and tailoring the luminescence to produce a distinctive bluish-white emission. The BDP-TMA-CsPbBr demonstrates significant phase stability under water exposure, light irradiation, and moderate temperature. Interestingly, BDP-TMA-CsPbBr exhibits the thermally-induced dynamic fluorescence control at elevated temperatures, which can be achieved feasible for advanced information encryption. This discovery paves the way for the exploration of perovskite QWs in applications like temperature sensing, anti-counterfeiting, and other advanced optical smart technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202314092DOI Listing

Publication Analysis

Top Keywords

phase distribution
16
singlet energy
8
energy transfer
8
trimethylamine modified
8
modified boron
8
boron dipyrromethene
8
quantum wells
8
phase
6
phase control
4
control singlet
4

Similar Publications

This paper presents a surrogate-assisted global and distributed local collaborative optimization (SGDLCO) algorithm for expensive constrained optimization problems where two surrogate optimization phases are executed collaboratively at each generation. As the complexity of optimization problems and the cost of solutions increase in practical applications, how to efficiently solve expensive constrained optimization problems with limited computational resources has become an important area of research. Traditional optimization algorithms often struggle to balance the efficiency of global and local searches, especially when dealing with high-dimensional and complex constraint conditions.

View Article and Find Full Text PDF

Prospects of cowpea protein as an alternative and natural emulsifier for food applications: Effect of pH and oil concentration.

Int J Biol Macromol

January 2025

Department of Food Engineering and Technology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Street Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, Brazil. Electronic address:

In response to the growing need to expand the knowledge base on novel, more sustainable protein sources, this study investigated the effectiveness of cowpea protein concentrate (CPC) as a natural emulsifying agent, examining the relationships between pH (3-11), oil concentration (2-10 %), and emulsion stability. pH and oil concentration significantly impacted droplet size distribution, with uniformity decreasing in the order of pH 9 > pH 11 > pH 7, which was attributed to droplet coalescence and flocculation. As evidenced by circular dichroism, alkalinity induced a slight increase in the beta-sheet content of CPC, while simultaneously reducing the alpha-helix content.

View Article and Find Full Text PDF

The droplet dynamics of asymmetrical impingement on moving ridged surface.

J Colloid Interface Sci

January 2025

School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093 China. Electronic address:

Hypothesis: The depth of research into the mechanism of droplet impacting structured surfaces dictates the efficacy of their applications. The impact stress generated when a droplet impacts a surface is a pivotal factor influencing the efficiency of surface applications, ultimately determining the extent of surface wear. Despite the systematic examination of impact force, there remains a scarcity of research on impact stress and its mitigation strategies.

View Article and Find Full Text PDF

Automatic Optical Path Alignment Method for Optical Biological Microscope.

Sensors (Basel)

December 2024

Guangxi Key Laboratory of Machine Vision and Intelligent Control, Wuzhou University, Wuzhou 543000, China.

A high-quality optical path alignment is essential for achieving superior image quality in optical biological microscope (OBM) systems. The traditional automatic alignment methods for OBMs rely heavily on complex masker-detection techniques. This paper introduces an innovative, image-sensor-based optical path alignment approach designed for low-power objective (specifically 4×) automatic OBMs.

View Article and Find Full Text PDF

What Is Grazing Time? Insights from the Acoustic Signature of Goat Jaw Activity in Wooded Landscapes.

Sensors (Basel)

December 2024

Rangeland Service, Ministry of Agriculture and Food Security, P.O. Box 30, Rishon LeZion 5025001, Israel.

Acoustic monitoring facilitates the detailed study of herbivore grazing by generating a timeline of sound bursts associated with jaw movements (JMs) that perform bite or chew actions. The unclassified stream of JM events was used here in an observational study to explore the notion of "grazing time". Working with shepherded goat herds in a wooded landscape, a horn-based acoustic sensor with a vibration-type microphone was deployed on a volunteer animal along each of 12 foraging routes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!