Beyond well-documented confinement and surface effects arising from the large internal surface and severely confining porosity of nanoporous hosts, the transport of nanoconfined fluids remains puzzling in many aspects. With striking examples such as memory, i.e., non-viscous effects, intermittent dynamics, and surface barriers, the dynamics of fluids in nanoconfinement challenge classical formalisms (e.g., random walk, viscous/advective transport)-especially for molecular pore sizes. In this context, while molecular frameworks such as intermittent Brownian motion, free volume theory, and surface diffusion are available to describe the self-diffusion of a molecularly confined fluid, a microscopic theory for collective diffusion (i.e., permeability), which characterizes the flow induced by a thermodynamic gradient, is lacking. Here, to fill this knowledge gap, we invoke the concept of "De Gennes narrowing," which relates the wavevector-dependent collective diffusivity D0(q) to the fluid structure factor S(q). First, using molecular simulation for a simple yet representative fluid confined in a prototypical solid (zeolite), we unravel an essential coupling between the wavevector-dependent collective diffusivity and the structural ordering imposed on the fluid by the crystalline nanoporous host. Second, despite this complex interplay with marked Bragg peaks in the fluid structure, the fluid collective dynamics is shown to be accurately described through De Gennes narrowing. Moreover, in contrast to the bulk fluid, the departure from De Gennes narrowing for the confined fluid in the macroscopic limit remains small as the fluid/solid interactions in severe confinement screen collective effects and, hence, weaken the wavevector dependence of collective transport.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0186956 | DOI Listing |
Curr Biol
August 2024
Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, The Netherlands. Electronic address:
Cell migration through complex 3D environments relies on the interplay between actin and microtubules. A new study shows that, when cells pass through narrow constrictions, CLASP-dependent microtubule stabilisation at the cell rear controls actomyosin contractility to enable nuclear translocation and preserve cell integrity.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2024
Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia.
We numerically studied localized elastic distortions in curved, effectively two-dimensional nematic shells. We used a mesoscopic Landau-de Gennes-type approach, in which the orientational order is theoretically considered by introducing the appropriate tensor nematic order parameter, while the three-dimensional shell shape is described by the curvature tensor. We limited our theoretical consideration to axially symmetric shapes of nematic shells.
View Article and Find Full Text PDFJ Chem Phys
January 2024
Univ. Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France.
Beyond well-documented confinement and surface effects arising from the large internal surface and severely confining porosity of nanoporous hosts, the transport of nanoconfined fluids remains puzzling in many aspects. With striking examples such as memory, i.e.
View Article and Find Full Text PDFUltramicroscopy
February 2024
Department of Materials Science and Engineering, University of Wisconsin Madison, Madison, WI 53706, USA. Electronic address:
Electron correlation microscopy (ECM) characterizes local structural relaxation dynamics in fluctuating systems like supercooled liquids with nanometer spatial resolution. We have developed a new type of ECM technique that provides moderate resolution in momentum transfer or k space using five-dimensional scanning transmission electron microscopy. k-resolved ECM on a PtCuNiP metallic supercooled liquids measures rich spatial and momentum structure in the relaxation time data τ(r,k).
View Article and Find Full Text PDFJ Allergy Clin Immunol
October 2023
Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France; CNRS, Paris, France. Electronic address:
Background: The actin cytoskeleton has a crucial role in the maintenance of the immune homeostasis by controlling various cellular processes, including cell migration. Mutations in TTC7A have been described as the cause of a primary immunodeficiency associated to different degrees of gut involvement and alterations in the actin cytoskeleton dynamics.
Objectives: This study investigates the impact of TTC7A deficiency in immune homeostasis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!