AI Article Synopsis

  • Global rates of biological invasion are rising, negatively impacting native biodiversity and ecosystem services, and hybridization may enhance this by increasing genetic variation and fitness in invasive species.
  • The study focused on blowflies in New Zealand, which are believed to have invaded from Australia between 1779 and 1841, analyzing genome-wide SNPs from 154 individuals across 24 populations to assess gene flow and hybridization.
  • Results indicated weak genetic structure in New Zealand populations, suggesting high gene flow, with evidence of both interspecific hybridization between species and intraspecific admixture among populations, underscoring the significance of hybridization in the context of biological invasions.

Article Abstract

Rates of biological invasion are increasing globally, with associated negative effects on native biodiversity and ecosystem services. Among other genetic processes, hybridisation can facilitate invasion by producing new combinations of genetic variation that increase adaptive potential and associated population fitness. Yet the role of hybridisation (and resulting gene flow) in biological invasion in invertebrate species is under-studied. and are blowflies proposed to have invaded New Zealand separately from Australia between 1779 and 1841, and are now widespread throughout the country. Here, we analysed genome-wide single nucleotide polymorphisms (SNPs), generating genotyping-by-sequencing data for 154 individuals collected from 24 populations across New Zealand and Australia to assess the extent of gene flow and hybridisation occurring within and between these blowflies and to better understand their overall population structure. We found that New Zealand populations of both species had weak genetic structure, suggesting high gene flow and an absence of dispersal limitations across the country. We also found evidence that interspecific hybridisation is occurring in the wild between .  and .  in both the native and invasive ranges, and that intraspecific admixture is occurring among populations at appreciable rates. Collectively, these findings provide new insights into the population structure of these two invasive invertebrates and highlight the potential importance of hybridisation and gene flow in biological invasion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10772223PMC
http://dx.doi.org/10.1002/ece3.10832DOI Listing

Publication Analysis

Top Keywords

gene flow
16
population structure
12
biological invasion
12
interspecific hybridisation
8
hybridisation gene
8
flow biological
8
hybridisation occurring
8
hybridisation
6
population
4
structure interspecific
4

Similar Publications

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

CAFs-released exosomal CREB1 promotes cell progression and immune evasion in thyroid cancer via the positive regulation of CCL20.

Autoimmunity

December 2025

Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.

Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.

View Article and Find Full Text PDF

Prognostic Value of Dynamic Measurable Residual Disease Monitoring by Multiflowcytometry in Elderly Patients With Nonintensively Treated Acute Myeloid Leukemia.

Clin Lymphoma Myeloma Leuk

January 2025

Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China. Electronic address:

Purpose: The clinical prognostic value of monitoring minimal residual disease (MRD) in acute myeloid leukemia (AML) patients undergoing nonintensive treatment remains insufficiently established. The aim of this work was to examine MRD status at various time points, highlighting the potential for pre-emptive therapy to improve patient outcomes.

Methods: Inpatient data from 2017 to 2024 were used in this retrospective study.

View Article and Find Full Text PDF

Background: B7 homolog 3 (B7-H3), an overexpressed antigen across multiple solid cancers, represents a promising target for CAR T cell therapy. This study investigated the expression of B7-H3 across various solid tumors and developed novel monoclonal antibodies (mAbs) targeting B7-H3 for CAR T cell therapy.

Methods: Expression of B7-H3 across various solid tumors was evaluated using RNA-seq data from TCGA, TARGET, and GTEx datasets and by flow cytometry staining.

View Article and Find Full Text PDF

Potential therapeutic effect of dimethyl fumarate on Treg/Th17 cell imbalance in biliary atresia.

Clin Immunol

January 2025

Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai 201102, China. Electronic address:

The imbalance between Tregs and proinflammatory Th17 cells in children with biliary atresia (BA) causes immune damage to cholangiocytes. Dimethyl fumarate (DMF), an immunomodulatory drug, regulates the Treg/Th17 balance in diseases like multiple sclerosis (MS). This study explores DMF's effect on Treg/Th17 balance in BA and its potential mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!