Fungal enzymes are effective in degrading various polymeric materials. In this study, we assessed the initial degradation of composites consisting of lignin-poly(lactic acid) (PLA) with both unmodified lignin (LIG) and oxypropylated lignin (oLIG) incorporated at 10 % and 40 % weight within the PLA matrix in a fungal environment. fungi were used, and the samples were treated only for eight weeks. Although there was no significant difference in weight loss, the degradation process impacted the chemical and thermal properties of the composites, as shown by Fourier transform infrared spectroscopy (FTIR) and Differential scanning calorimetry (DSC) analyses. After the degradation process, the carbonyl index values decreased for all composites and the hydroxyl index values increased for LIG/PLA and a reverse trend was observed for oLIG/PLA composites. The first heating scan from DSC results showed that the melting peak and the cold crystallization peak disappeared after the degradation process. Microscopic analysis revealed that LIG/PLA exhibited higher roughness than oLIG/PLA. Molecular docking simulations were carried out using guaiacylglycerol-β-guaiacyl ether (GGE) and lactic acid (LA) as model compounds for lignin and PLA, respectively, with laccase (Lac) enzyme for . The docking results showed that GGE had the strongest binding interaction and affinity with than lactic acid and oxypropylated GGE. The oxypropylated GGE formed a shorter hydrogen bonding with the enzyme than GGE and LA. The trend associated with the degradation of composites from experimental and molecular docking findings was consistent. This combined approach provided insights into the degradation process using fungi and had the potential to be applied to different polymeric composites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10772188 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e23838 | DOI Listing |
Chem Asian J
January 2025
Shaanxi University of Technology, School of Materials Science and Engineering, No.1 East Ring Rd., Hantai District, 723001, Hanzhong, CHINA.
Lithium-sulfur (Li-S) batteries are promising energy storage devices due to their high theoretical energy density and cost-effectiveness. However, the shuttle effect of polysulfides during the charging and discharging processes leads to a rapid decline in capacity, thereby restricting their application in energy storage. The separator, a crucial component of Li-S batteries, facilitates the transport of Li+ ions.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, 66075-110, Brazil.
Plastic poses a significant environmental impact due to its chemical resilience, leading to prolonged and degradation times and resulting in widespread adverse effects on global flora and fauna. Cutinases are essential enzymes in the biodegradation process of synthetic polymers like polyethylene terephthalate (PET), which recognized organisms can break down. Here, we used molecular dynamics and binding free energy calculations to explore the interaction of nine synthetic polymers, including PET, with Cutinase from Fusarium oxysporum (FoCut).
View Article and Find Full Text PDFNat Commun
January 2025
Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands.
Secondary amines are vital functional groups in pharmaceuticals, agrochemicals, and natural products, necessitating efficient synthetic methods. Traditional approaches, including N-monoalkylation and reductive amination, suffer from limitations such as poor chemoselectivity and complexity. Herein, we present a streamlined deoxygenative photochemical alkylation of secondary amides, enabling the efficient synthesis of α-branched secondary amines.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, 20 N Pine Street, Baltimore, Maryland, 21201, USA.
Dosage forms containing Ivermectin (IVER) and Praziquantel (PRAZ) are important combination drug products in animal health. Understanding the relationship between products with differing in vitro release characteristics and bioequivalence could facilitate generics. The goal of this study was to create granulations for each active ingredient, with similar release mechanisms, but substantially different in vitro release rates, and then compressing these granulations into tablets with differing release rates.
View Article and Find Full Text PDFSci China Life Sci
January 2025
State Key Laboratory of Pharmaceutical Biotechnology, Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, 210061, China.
Insulin-like growth factor 1 (IGF1) is a regulator of both cellular hypertrophy and lipogenesis, which are two key processes for pathogenesis of obesity. However, the in vivo role of IGF1 in the development of obesity remains unclear. Here, we show that IGF1 expression is increased in adipose tissue in obese human patients and animal models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!