AI Article Synopsis

  • Scientists are working on developing drug delivery systems that target diseased tissues while minimizing side effects on healthy organs, with red blood cells (RBCs) showing potential as natural carriers due to their unique properties.
  • Autologous RBCs (derived from a patient’s own blood) are especially promising for drug delivery due to their safety, immunogenic compatibility, and biodegradability.
  • This review highlights advancements in encapsulating drugs into RBCs using osmotic methods, including clinical trial discussions and the need for automation in the production process to enhance the efficiency of targeted therapies.

Article Abstract

Scientific organizations worldwide are striving to create drug delivery systems that provide a high local concentration of a drug in pathological tissue without side effects on healthy organs in the body. Important physiological properties of red blood cells (RBCs), such as frequent renewal ability, good oxygen carrying ability, unique shape and membrane flexibility, allow them to be used as natural carriers of drugs in the body. Erythrocyte carriers derived from autologous blood are even more promising drug delivery systems due to their immunogenic compatibility, safety, natural uniqueness, simple preparation, biodegradability and convenience of use in clinical practice. This review is focused on the achievements in the clinical application of targeted drug delivery systems based on osmotic methods of loading RBCs, with an emphasis on advancements in their industrial production. This article describes the basic methods used for encapsulating drugs into erythrocytes, key strategic approaches to the clinical use of drug-loaded erythrocytes obtained by hypotonic hemolysis. Moreover, clinical trials of erythrocyte carriers for the targeted delivery are discussed. This article explores the recent advancements and engineering approaches employed in the encapsulation of erythrocytes through hypotonic hemolysis methods, as well as the most promising inventions in this field. There is currently a shortage of reviews focused on the automation of drug loading into RBCs; therefore, our work fills this gap. Finally, further prospects for the development of engineering and technological solutions for the automatic production of drug-loaded RBCs were studied. Automated devices have the potential to provide the widespread production of RBC-encapsulated therapeutic drugs and optimize the process of targeted drug delivery in the body. Furthermore, they can expedite the widespread introduction of this innovative treatment method into clinical practice, thereby significantly expanding the effectiveness of treatment in both surgery and all areas of medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10772586PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e23451DOI Listing

Publication Analysis

Top Keywords

drug delivery
20
delivery systems
12
drug-loaded erythrocytes
8
erythrocyte carriers
8
clinical practice
8
targeted drug
8
loading rbcs
8
erythrocytes hypotonic
8
hypotonic hemolysis
8
drug
7

Similar Publications

Neuronanomedicine harnesses nanoparticle technology for the treatment of neurological disorders. An unavoidable consequence of nanoparticle delivery to biological systems is the formation of a protein corona on the nanoparticle surface. Despite the well-established influence of the protein corona on nanoparticle behavior and fate, as well as FDA approval of neuro-targeted nanotherapeutics, the effect of a physiologically relevant protein corona on nanoparticle-brain cell interactions is insufficiently explored.

View Article and Find Full Text PDF

Mitochondrial Electron Flow Dynamics Imaging for Assessing Mitochondrial Quality and Drug Screening.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, School of Pharmaceutical Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China.

Mitochondrial quality control is paramount for cellular development, with mitochondrial electron flow (Mito-EF) playing a central role in maintaining mitochondrial homeostasis. However, unlike visible protein entities, which can be monitored through chemical biotechnology, regulating mitochondrial quality control by invisible entities such as Mito-EF has remained elusive. Here, a Mito-EF tracker (Mito-EFT) with a four-pronged probe design is presented to elucidate the dynamic mechanisms of Mito-EF's involvement in mitochondrial quality control.

View Article and Find Full Text PDF

Spatiotemporal Dynamic Immunomodulation by Infection-Mimicking Gels Enhances Broad and Durable Protective Immunity Against Heterologous Viruses.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.

Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.

View Article and Find Full Text PDF

Traditional Chinese Medicine Borneol-Based Polymeric Micelles Intracerebral Drug Delivery System for Precisely Pathogenesis-Adaptive Treatment of Ischemic Stroke.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.

The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.

View Article and Find Full Text PDF

Pulmonary metastasis represents one of the most prevalent forms of metastasis in advanced melanoma, with mortality rates reaching 70%. Current treatments including chemotherapy, targeted therapy, and immunotherapy frequently exhibit limited efficacy or present high costs. To address these clinical needs, this study presents a biomimetic drug delivery system (Ce6-pTP-CsA) utilizing cryoshocked adipocytes (CsA) encapsulating the prodrug triptolide palmitate (pTP) and the photosensitizer Ce6, exploiting the characteristic of tumor cells to recruit and lipolyze adipocytes for energy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!