Lipases are promising improvers of cake batter and baking properties. Their suitability for use in various cake formulations cannot be predicted yet, because the reactions that lead to macroscopic effects need to be unravelled. Therefore, the lipidome of three different cake recipes with and without lipase treatment was assessed by ultra high performance liquid chromatography-mass spectrometry before and after baking. By comparing the reaction patterns of seven different lipases in the recipes with known effects on texture, we show that lipase substrate specificity impacts baking quality. Key reactions for the recipes were identified with the help of principal component analysis. In the eggless basic cake, glyceroglycolipids are causal for baking improvement. In pound cake, lysoglycerophospholipids were linked to textural effects. Lipase substrate specificity was shown to be dependent on the recipe. Further research is needed to understand how recipes can be adjusted to achieve optimal lipase substrate specificity for desirable batter and baking properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773883 | PMC |
http://dx.doi.org/10.3389/fnut.2023.1290502 | DOI Listing |
Prep Biochem Biotechnol
January 2025
Department of Physical Science, Sant Baba Bagh Singh University, Jalandhar, Punjab, India.
Fungal lipases are the leading industrial biocatalyst due to their broad applications, but high cost limits their commercial usage. The low-cost agri-residues substrates can reduce the cost of lipase production. However, the compatibility of agri-residue with fungal species, recovery process of lipase and stability of the enzyme are crucial steps.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Life Science, Hebei University, Innovation Center for Bioengineering and Biotechnology of Hebei Province, Baoding 071002, China. Electronic address:
Nowadays, metal-organic frameworks (MOFs) have been emerged as an efficient platform for enzyme immobilization due to their high porosity, tunability, and chemical versatility. In this study, a series of hybrid lipase@NKMOF-101-M (M = Mg, Mn, Zn, Co, or Ni) biocatalysts were constructed through a facile in situ encapsulation method, and the encapsulation and immobilization of lipase in MOFs were carefully validated. The catalytic activity of lipase@NKMOF-101-Mn was 2-fold higher than that of lipase@ZIF-8 and 3-fold higher than that of lipase@MCM-41 due to its excellent dispersibility and hydrophobicity in hexane.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Functional Dairy Products Engineering Laboratory of Gansu Province, College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
Pancreatic lipase serves as a primary trigger for hyperlipidemia and is also a crucial target in the inhibition of hypercholesterolemia. By synthesizing anti-hypercholesterolemic drugs such as atorvastatin, which are used to treat hypercholesterolemia, there were some side effects associated with the long-term use of statins. Based on this idea, in the present study, we identified peptides that inhibited PL by virtual screening and in vitro activity assays.
View Article and Find Full Text PDFJ Comp Physiol B
January 2025
Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Mar del Plata, Funes 3250 (7600), Mar del Plata, Argentina.
The knowledge about the occurrence and biochemical characteristics of key digestive enzymes is crucial for an enhanced understanding of the dietary ecophysiology of the species. On the other hand, integrative studies on digestive physiology and on tissue content of glycogen, glucose, lipid and protein in groups of ecological and economic importance are currently limited. In this work, we determined the occurrence and biochemical characteristics in intestine of key digestive enzymes activities as indexes of the ability to digest different dietary substrates and of functional differentiation for digestion/absorption of nutrients along with the intestinal coefficient as index of dietary habit and digestion efficiency in adults of Odonthtestes argentinensis inhabiting Mar Chiquita Coastal Lagoon (Buenos Aires, Argentina).
View Article and Find Full Text PDFFungal Genet Biol
February 2025
Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT 2601, Australia. Electronic address:
Wheat stripe rust caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is currently the most destructive disease of wheat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!