The one-dimensional cutting-stock problem (1D-CSP) consists of obtaining a set of items of different lengths from stocks of one or different lengths, where the minimization of waste is one of the main objectives to be achieved. This problem arises in several industries like wood, glass, and paper, among others similar. Different approaches have been designed to deal with this problem ranging from exact algorithms to hybrid methods of heuristics or metaheuristics. The African Buffalo Optimization (ABO) algorithm is used in this work to address the 1D-CSP. This algorithm has been recently introduced to solve combinatorial problems such as travel salesman and bin packing problems. A procedure was designed to improve the search by taking advantage of the location of the buffaloes just before it is needed to restart the herd, with the aim of not to losing the advance reached in the search. Different instances from the literature were used to test the algorithm. The results show that the developed method is competitive in waste minimization against other heuristics, metaheuristics, and hybrid approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773734PMC
http://dx.doi.org/10.7717/peerj-cs.1728DOI Listing

Publication Analysis

Top Keywords

african buffalo
8
buffalo optimization
8
heuristics metaheuristics
8
minimizing total
4
total waste
4
waste one-dimensional
4
one-dimensional cutting
4
cutting stock
4
problem
4
stock problem
4

Similar Publications

Background: Obesity, classified by body mass index (BMI), is associated with higher postmenopausal breast cancer (BCa) risk. Yet, the associations between abdominal visceral (VAT) and subcutaneous adipose tissue (SAT) with BCa are unclear.

Methods: We assessed BCa associations with abdominal VAT and SAT in a prospective cohort of postmenopausal women without a history of cancer and with 27 years follow-up (N = 9950), during which all new cancers were adjudicated.

View Article and Find Full Text PDF

Objective: To examine associations between student perceptions of school physical activity best practices and accelerometer-based physical activity during school days.

Methods: The sample was 758 students in grades 3rd-4th or 6th-7th (female-58 %; 31 % Black/African American) from 33 schools across five school districts in a Mid-Atlantic state in the U.S.

View Article and Find Full Text PDF

Background: African buffalo (Syncerus caffer) is a significant reservoir host for many zoonotic and parasitic infections in Africa. These include a range of viruses and pathogenic bacteria, such as tick-borne rickettsial organisms. Despite the considerations of mammalian blood as a sterile environment, blood microbiome sequencing could become crucial for agnostic biosurveillance.

View Article and Find Full Text PDF

The reduced cost of next-generation sequencing (NGS) has allowed researchers to generate nuclear and mitochondrial genome data to gain deeper insights into the phylogeography, evolutionary history and biology of non-model species. While the Cape buffalo () has been well-studied across its range with traditional genetic markers over the last 25 years, researchers are building on this knowledge by generating whole genome, population-level data sets to improve understanding of the genetic composition and evolutionary history of the species. Using publicly available NGS data, we assembled 40 Cape buffalo mitochondrial genomes (mitogenomes) from four protected areas in South Africa, expanding the geographical range and almost doubling the number of mitogenomes available for this species.

View Article and Find Full Text PDF

Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!