An accurate determination of the Gleason Score (GS) or Gleason Pattern (GP) is crucial in the diagnosis of prostate cancer (PCa) because it is one of the criterion used to guide treatment decisions for prognostic-risk groups. However, the manually designation of GP by a pathologist using a microscope is prone to error and subject to significant inter-observer variability. Deep learning has been used to automatically differentiate GP on digitized slides, aiding pathologists and reducing inter-observer variability, especially in the early GP of cancer. This article presents a binary semantic segmentation for the GP of prostate adenocarcinoma. The segmentation separates benign and malignant tissues, with the malignant class consisting of adenocarcinoma GP3 and GP4 tissues annotated from 50 unique digitized whole slide images (WSIs) of prostate needle core biopsy specimens stained with hematoxylin and eosin. The pyramidal digitized WSIs were extracted into image patches with a size of 256 × 256 pixels at a magnification of 20×. An ensemble approach is proposed combining U-Net-based architectures, including traditional U-Net, attention-based U-Net, and residual attention-based U-Net. This work initially considers a PCa tissue analysis using a combination of attention gate units with residual convolution units. The performance evaluation revealed a mean Intersection-over-Union of 0.79 for the two classes, 0.88 for the benign class, and 0.70 for the malignant class. The proposed method was then used to produce pixel-level segmentation maps of PCa adenocarcinoma tissue slides in the testing set. We developed a screening tool to discriminate between benign and malignant prostate tissue in digitized images of needle biopsy samples using an AI approach. We aimed to identify malignant adenocarcinoma tissues from our own collected, annotated, and organized dataset. Our approach returned the performance which was accepted by the pathologists.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773872 | PMC |
http://dx.doi.org/10.7717/peerj-cs.1767 | DOI Listing |
Sci Data
January 2025
School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210000, China.
Travelable area boundaries not only constrain the movement of field robots but also indicate alternative guiding routes for dynamic objects. Publicly available road boundary datasets have outlined boundaries by binary segmentation labels. However, hard post-processes have to be done to extract from detected boundaries further semantics including the shapes of the boundaries and guiding routes, which poses challenges to a real-time visual navigation system without detailed prior maps.
View Article and Find Full Text PDFMed Image Anal
January 2025
ICube, University of Strasbourg, CNRS, France; IHU Strasbourg, Strasbourg, France.
Instance segmentation of surgical instruments is a long-standing research problem, crucial for the development of many applications for computer-assisted surgery. This problem is commonly tackled via fully-supervised training of deep learning models, requiring expensive pixel-level annotations to train. In this work, we develop a framework for instance segmentation not relying on spatial annotations for training.
View Article and Find Full Text PDFJ Imaging
January 2025
RCAM Laboratory, Telecommunications Department, Sidi Bel Abbes University, Sidi Bel Abbes 22000, Algeria.
In recent years, deep-network-based hashing has gained prominence in image retrieval for its ability to generate compact and efficient binary representations. However, most existing methods predominantly focus on high-level semantic features extracted from the final layers of networks, often neglecting structural details that are crucial for capturing spatial relationships within images. Achieving a balance between preserving structural information and maximizing retrieval accuracy is the key to effective image hashing and retrieval.
View Article and Find Full Text PDFSensors (Basel)
December 2024
B-DAT and CICAEET, Nanjing University of Information Science and Technology, Nanjing 210044, China.
Existing learning-based remote sensing change detection (RSCD) commonly uses semantic-agnostic binary masks as supervision, which hinders their ability to distinguish between different semantic types of changes, resulting in a noisy change mask prediction. To address this issue, this paper presents a Language-guided semantic clustering framework that can effectively transfer the rich semantic information from the contrastive language-image pretraining (CLIP) model for RSCD, dubbed LSC-CD. The LSC-CD considers the strong zero-shot generalization of the CLIP, which makes it easy to transfer the semantic knowledge from the CLIP into the CD model under semantic-agnostic binary mask supervision.
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer and Control Engineering, Qiqihar University, Qiqihar, 161000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!