Atomic force microscopy (AFM) is widely utilized to visualize the molecular motions of biomolecules. Comparison of experimentally measured AFM images with simulated AFM images based on known structures of biomolecules is often necessary to elucidate what is actually resolved in the images. Experimental AFM images are generated by force measurements; however, conventional AFM simulation has been based on geometrical considerations rather than calculating forces using molecular dynamics simulations due to limited computation time. This letter summarizes recently developed methods to simulate topographic and three-dimensional AFM (3D-AFM) images of biopolymers such as chromosomes and cytoskeleton fibers. Scanning such biomolecules in AFM measurements usually results in nonequilibrium-type work being performed. As such, the Jarzynski equality was employed to relate the nonequilibrium work to the free energy profiles, and the forces were calculated by differentiating the free energy profiles. The biomolecules and probes were approximated using a supra-coarse-grained model, allowing the simulation of force-distance curves in feasible time. It was found that there is an optimum scanning velocity and that some of polymer structures are resolved in the simulated 3D-AFM images. The theoretical background adopted to rationalize the use of small probe radius in the conventional AFM simulation of biomolecules is clarified.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10771545 | PMC |
http://dx.doi.org/10.1007/s12551-023-01167-1 | DOI Listing |
ACS Nano
January 2025
Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
Atomic force microscopy (AFM) has reached a significant level of maturity in biology, demonstrated by the diversity of modes for obtaining not only topographical images but also insightful mechanical and adhesion data by performing force measurements on delicate samples with a controlled environment (e.g., liquid, temperature, pH).
View Article and Find Full Text PDFAdv Funct Mater
January 2025
Magnetic particle imaging (MPI) is an emerging modality that can address longstanding technological challenges encountered with magnetic particle hyperthermia (MPH) cancer therapy. MPI is a tracer technology compatible with MPH for which magnetic nanoparticles (MNPs) provide signal for MPI and heat for MPH. Identifying whether a specific MNP formulation is suitable for both modalities is essential for clinical implementation.
View Article and Find Full Text PDFSci Adv
January 2025
Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan.
Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Engineering, Ulster University, York Street, Belfast, Northern Ireland, BT15 1AP, UK.
Recent advancements in atomic force microscopy (AFM) have enabled detailed exploration of materials at the molecular and atomic levels. These developments, however, pose a challenge: the data generated by microscopic and spectroscopic experiments are increasing rapidly in both size and complexity. Extracting meaningful physical insights from these datasets is challenging, particularly for multilayer heterogeneous nanoscale structures.
View Article and Find Full Text PDFJ Prosthodont
January 2025
Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai, PR China.
Purpose: To evaluate the shear bond strength (SBS) of stereolithography (SLA), digital light processing (DLP) manufactured, and computer numerical control (CNC) milled zirconia to veneering ceramic.
Materials And Methods: Rectangular shaped zirconia substrates (10 × 5 × 5 mm) were manufactured through SLA, DLP, and CNC technology separately. Their surface roughness was measured and the surface topography was analyzed by atomic force microscope (AFM).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!