Two different synthetic approaches to novel heterocyclic hybrid compounds of 4-azapodophyllotoxin were investigated. The obtained products were characterized by infrared spectroscopy, nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry. MTT protocol was then performed to examine the cytotoxic activity of these products against KB, HepG2, A549, MCF7, and Hek-293 cell lines. The cytotoxic assessment indicated that all products displayed moderate to high cytotoxicity against all tested cancer cell lines. The most active compound 13k containing the 2-methoxypyridin-4-yl group exhibited selective cytotoxicity against KB, A549, and HepG2 cell lines with the IC values ranging from 0.23 to 0.27 μM, which were between 5- to 10-fold more potent than the positive control ellipticine. Compounds 13a (HetAr = thiophen-3-yl) and 13d (HetAr = 5-bromofuran-2-yl) displayed high cytotoxic selectivity for A549 and HepG2 cancer cell lines when compared to the other cancer cell lines and low toxicity to the normal Hek-293 cell line. Molecular docking study was conducted to evaluate the interaction of new synthesized compounds with the colchicine-binding-site of tubulin. Besides that, physicochemical and pharmacokinetic properties of the most active compounds 13h,k were predicted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10772362PMC
http://dx.doi.org/10.1039/d3ra07396cDOI Listing

Publication Analysis

Top Keywords

cell lines
20
cancer cell
12
molecular docking
8
hek-293 cell
8
a549 hepg2
8
cell
6
lines
5
synthesis molecular
4
docking analysis
4
analysis evaluation
4

Similar Publications

ZAG promotes colorectal cancer cell proliferation and epithelial-mesenchymal transition by promoting lipid synthesis.

Open Life Sci

December 2024

Department of Gastroenterology, The Ninth People's Hospital of Chongqing, No. 69, Jialing Village, Beibei District, Chognqing, 400700, China.

Colorectal cancer (CRC) is a common malignant tumor characterized by a high degree of invasiveness, and since zinc-α2 glycoprotein (ZAG) has been implicated in the progression of several malignancies, this study was designed to investigate the role of ZAG in CRC. Its expression was assessed using the GEPIA database, and short hairpin RNA (shRNA) interference was conducted to create ZAG knockdown in CRC cell lines. We also conducted lipid synthesis, cell proliferation, apoptosis, and epithelial-mesenchymal transition (EMT) experiments to elucidate the effects of ZAG expression on CRC, as well as explored the potential underlying mechanistic pathways.

View Article and Find Full Text PDF

Unlabelled: This study investigated the anticancer phytocompounds in leaf extracts of Kunth. Quantitative analysis of the phytochemical composition showed high levels of primary metabolites: carbohydrates (45.11 ± 2.

View Article and Find Full Text PDF

Osteonecrosis of the femoral head can lead to end-stage osteoarthritis when left untreated. The incidence has been on the rise since the onset of the COVID-19 pandemic. Core decompression of the femoral head is usually the first line of surgical treatment when conservative options fail.

View Article and Find Full Text PDF

, a R2R3-MYB transcription factor from purple tea (), positively regulates anthocyanin biosynthesis.

Front Plant Sci

December 2024

Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou, Guangdong, China.

In tea (), anthocyanins are important secondary metabolites that are linked to leaf color. Anthocyanin biosynthesis is a complex biological process, in which multiple genes including structural and regulatory genes are involved. Here, we describe the cloning and characterizing of a new R2R3-MYB transcription factor gene, , isolated from purple tea variety ''.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!