Human serum albumin (HSA) is an important biomarker that can be used for the early diagnosis of many diseases. In this work, a TICT probe bearing fused naphtho-furan scaffold (NPNF) was developed and employed in the selective turn-on sensing of HSA. The probe's selectivity towards HSA was observed using steady-state fluorescence experiments, with limit of quantitation in micromolar levels. NPNF's capability to exclusively detect HSA over BSA was further studied/rationalized using anisotropy and time-resolved studies. Molecular docking was used to shed light on the location of NPNF in the subdomain IB of HSA. The practical application of the probe was also demonstrated by the detection of HSA in urine and the HSA-assisted detection of cerium.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202301055DOI Listing

Publication Analysis

Top Keywords

hsa bsa
8
human serum
8
serum albumin
8
hsa
7
bsa selective
4
selective detection
4
detection human
4
albumin naphtho
4
naphtho [21-b]
4
[21-b] furan-based
4

Similar Publications

Tetraphenylethylene-indole as a novel fluorescent probe for selective and sensitive detection of human serum albumin (HSA) in biological matrices and monitoring of HSA purity and degradation.

Talanta

December 2024

Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Public Health, Hebei University, Baoding, 071002, PR China.

Human serum albumin (HSA) levels in serum and urine is a crucial biomarker for diagnosing liver and kidney diseases. HSA is used to treat various disorders in clinical practice and as an excipient in the production of vaccine or protein drug, ensuring its purity essential for patient safety. However, selective and sensitive detection of HSA remains challenging due to its structural similarity with bovine serum albumin (BSA) and the inherent complexity of biological matrices.

View Article and Find Full Text PDF

The biotin-conjugated Fe(III) catecholate complex [Fe(BioL)], Fe(BioL) (BioLH=N-(3,4-dihydroxyphenethyl)-5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide) is reported as targeted magnetic resonance imaging (MRI) contrast agents (CAs) to increase the payload for early-stage imaging of tumours. The high spin state and octahedral coordination of the Fe(III) complex are confirmed by EPR spectra and DFT optimized structure, respectively. The overall formation constant (log K) of Fe(BioL) is determined as 45, which is higher than the known, more stable complex [Fe(EDTA)].

View Article and Find Full Text PDF

Non-immunoglobin scaffold binders as efficient affinity ligands for purification of broad-spectrum serum albumins.

Talanta

November 2024

Division of Abdominal Tumor Multimodality Treatment, Cancer Center, NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu, 610041, China; Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:

Although non-immunoglobin scaffold binders with high affinity and broad spectrum for albumin are attractive for lab-scale albumin purification, affinity chromatography based on these binders has not been developed. Here, the albumin-binding capabilities of representative binders, including protein G-derived albumin binding domain (ABD), albumin binding nanofitins (ABNF), and human serum albumin affimer 31 (HSA31) were predicted by interaction structure analysis and verified by experimental assays. Interaction structure prediction suggested that ABD possessed great potential to bind human (HSA), rhesus monkey (RhSA), mouse (MSA), and rat serum albumin (RSA), whereas ABNF might only bind HSA and bovine serum albumin (BSA), and HSA31 might not bind any of the tested albumins.

View Article and Find Full Text PDF

Nanoparticle-protein interactions: Spectroscopic probing of the adsorption of serum albumin to graphene oxide‑gold nanocomplexes surfaces.

Int J Biol Macromol

January 2025

Laboratory of New Antitumor Drug Molecular Design & Synthesis, College of Basic Medicine, Jining Medical University, Jining 272067, Shandong Province, China. Electronic address:

Graphene oxide‑gold nanocomposites (GO-AuNCPs) are promising candidates in nanomedicine. They will inevitably bind with biomolecules such as serum albumin (SA) in the body while they enter the organism. The interaction between GO-AuNCPs and human serum albumin (HSA)/bovine serum albumin (BSA) were investigated by using multispectroscopic methods, elucidating the binding principles through molecular simulations.

View Article and Find Full Text PDF

Data are accumulating on the hydrolytic activity of serum albumin towards esters and organophosphates. Previously, with the help of the technology of proton nuclear magnetic resonance (H NMR) spectroscopy, we observed the yield of acetate in the solution of bovine serum albumin and -nitrophenyl acetate (NPA). Thus, we showed that albumin possesses true esterase activity towards NPA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!