Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Speech understanding is considered a bimodal and bidirectional process, whereby visual information (i.e., speechreading) and also cognitive functions (i.e., top-down processes) are involved. Therefore, the purpose of the present study is twofold: (1) to investigate the auditory (A), visual (V), and cognitive (C) abilities in normal-hearing individuals, hearing aid (HA) users, and cochlear implant (CI) users, and (2) to determine an auditory, visual, cognitive (AVC)-profile providing a comprehensive overview of a person's speech processing abilities, containing a broader variety of factors involved in speech understanding.
Design: Three matched groups of subjects participated in this study: (1) 31 normal-hearing adults (mean age = 58.76), (2) 31 adults with moderate to severe hearing loss using HAs (mean age = 59.31), (3) 31 adults with a severe to profound hearing loss using a CI (mean age = 58.86). The audiological assessments consisted of pure-tone audiometry, speech audiometry in quiet and in noise. For evaluation of the (audio-) visual speech processing abilities, the Test for (Audio) Visual Speech perception was used. The cognitive test battery consisted of the letter-number sequencing task, the letter detection test, and an auditory Stroop test, measuring working memory and processing speed, selective attention, and cognitive flexibility and inhibition, respectively. Differences between the three groups were examined using a one-way analysis of variance or Kruskal-Wallis test, depending on the normality of the variables. Furthermore, a principal component analysis was conducted to determine the AVC-profile.
Results: Normal-hearing individuals scored better for both auditory, and cognitive abilities compared to HA users and CI users, listening in a best aided condition. No significant differences were found for speech understanding in a visual condition, despite a larger audiovisual gain for the HA users and CI users. Furthermore, an AVC-profile was composed based on the different auditory, visual, and cognitive assessments. On the basis of that profile, it is possible to determine one comprehensive score for auditory, visual, and cognitive functioning. In the future, these scores could be used in auditory rehabilitation to determine specific strengths and weaknesses per individual patient for the different abilities related to the process of speech understanding in daily life.
Conclusions: It is suggested to evaluate individuals with hearing loss from a broader perspective, considering more than only the typical auditory abilities. Also, cognitive and visual abilities are important to take into account to have a more complete overview of the speech understanding abilities in daily life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/AUD.0000000000001458 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!