The quest for electronic devices that offer flexibility, wearability, durability and high performance has spotlighted two-dimensional (2D) van der Waals materials as potential next-generation semiconductors. Especially noteworthy is indium selenide, which has demonstrated surprising ultra-high plasticity. To deepen our understanding of this unusual plasticity in 2D van der Waals materials and to explore inorganic plastic semiconductors, we have conducted in-depth experimental and theoretical investigations on metal monochalcogenides (MX) and transition metal dichalcogenides (MX). We have discovered a general plastic deformation mode in MX, which is facilitated by the synergetic effect of phase transitions, interlayer gliding and micro-cracks. This is in contrast to crystals with strong atomic bonding, such as metals and ceramics, where plasticity is primarily driven by dislocations, twinning or grain boundaries. The enhancement of gliding barriers prevents macroscopic fractures through a pinning effect after changes in stacking order. The discovery of ultra-high plasticity and the phase transition mechanism in 2D MX materials holds significant potential for the design and development of high-performance inorganic plastic semiconductors.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-023-01788-7DOI Listing

Publication Analysis

Top Keywords

ultra-high plasticity
12
metal monochalcogenides
8
van der
8
der waals
8
waals materials
8
inorganic plastic
8
plastic semiconductors
8
plasticity
5
deciphering ultra-high
4
plasticity metal
4

Similar Publications

Background: Soft tissue sarcomas (STS) are rare malignancies requiring extensive surgical resection, often leading to significant soft tissue defects. Flap reconstruction is crucial for restoring function and appearance. Recent reconstructive microsurgery advancements, including high-resolution indocyanine green (ICG) imaging and ultra-high-frequency ultrasonography (UHFU), have revolutionized preoperative planning and intraoperative guidance.

View Article and Find Full Text PDF

Introduction: The chicken egg, with its compartments, is a widely used and popular animal model in experimental studies. This study aimed to quantify the volumes of the yolk/yolk sac, amniotic fluid, and chicken embryo using non-invasive ultra-high-field magnetic resonance imaging (UHF-MRI).

Materials And Methods: In total, 64 chicken eggs were examined using a 7 T UHF-MRI scanner, acquiring T2-weighted anatomical images of the entire egg from developmental day 1 to 16 (D1-D16).

View Article and Find Full Text PDF

Plastic damage of REBCO (REBaCuO, where RE=rare earth) coated conductors by screening current stress (SCS) is a significant concern for ultra-high-field superconducting magnets. Indeed, the third Little Big Coil (LBC3), a REBCO magnet that generated a record, high field of 45.5 T, showed wavy plastic damage produced by excess SCS in all pancakes except two made with single-slit conductors having their slit edges pointing inward towards the magnet center.

View Article and Find Full Text PDF

Reaction kinetics and molecular characterization of the compounds formed by photosensitized degradation of the plastic additive bisphenol A in the atmospheric aqueous phase.

Sci Rep

December 2024

State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.

Bisphenol A (BPA, 4,4'-(propane-2,2-diyl)diphenol) is a common plasticizer that is very widespread in the environment and is also found at significant concentrations in the global oceans, due to contamination by plastics. Here we show that triplet sensitization is an important degradation pathway for BPA in natural surface waters, which could prevail if the water dissolved organic carbon is above 2-3 mg L. Bromide levels as per seawater conditions have the potential to slow down BPA photodegradation, a phenomenon that could not be offset by reaction of BPA with Br (second-order reaction rate constant of (2.

View Article and Find Full Text PDF

The objective of this study, PLASTOGEST, was to evaluate the risk associated with oligomers and other potentially harmful chemical compounds when consumed by humans through food. This research systematically reviewed existing literature and applies untargeted analysis to assess the fate of non-intentionally added substances (NIAS) and intentionally added substances (IAS) during in vitro digestion. Polyethylene terephthalate and polybutylene terephthalate oligomers and simulation of real food conditions were used to evaluate migration and how these oligomers behave during in vitro digestion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!