Disordered photonic structures are promising for the realization of physical unclonable functions-physical objects that can overcome the limitations of conventional digital security and can enable cryptographic protocols immune against attacks by future quantum computers. The physical configuration of traditional physical unclonable functions is either fixed or can only be permanently modified, allowing one token per device and limiting their practicality. Here we overcome this limitation by creating reconfigurable structures made by light-transformable polymers in which the physical structure of the unclonable function can be reconfigured reversibly. Our approach allows the simultaneous coexistence of multiple physical unclonable functions within one device. The physical transformation is done all-optically in a reversible and spatially controlled fashion, allowing the generation of more complex keys. At the same time, as a set of switchable individual physical unclonable functions, it enables the authentication of multiple clients and allows for the practical implementations of quantum secure authentication and nonlinear generators of cryptographic keys.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41563-023-01734-7 | DOI Listing |
Nat Commun
January 2025
Department of Electronic Engineering, BNRist/LFET, Tsinghua University, Beijing, China.
Physical unclonable functions (PUFs) are of immense potential in authentication scenarios for Internet of Things (IoT) devices. For creditable and lightweight PUF applications, key attributes, including low power, high reconfigurability and large challenge-response pair (CRP) space, are desirable. Here, we report a ferroelectric field-effect transistor (FeFET)-based strong PUF with high reconfigurability and low power, which leverages the FeFET cycle-to-cycle variation throughout the workflow and introduces charge-domain in-memory computing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.
Optical physical unclonable functions (PUFs) are gaining attention as a robust security solution for identification in the expanding Internet of Things (IoT). To enhance the security and functionality of PUFs, integrating multiple optical responses─such as fluorescence and structural color─into a single system is essential. These diverse optical properties enable multilevel authentication, where different layers of security can be verified under varying light conditions, greatly reducing the risk of counterfeiting.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
Physical unclonable functions (PUFs), often referred to as digital fingerprints, are emerging as critical elements in enhancing hardware security and encryption. While significant progress has been made in developing optical and memory-based PUFs, integrating reconfigurability with sensitivity to circularly polarized light (CPL) remains largely unexplored. Here, we present a chiroptical synaptic memristor (CSM) as a reconfigurable PUF, leveraging a two-dimensional organic-inorganic halide chiral perovskite.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Group of Electronic Design (GDE), Aragón Institute of Engeneering Research (I3A), University of Zaragoza, 50009 Zaragoza, Spain.
One of the challenges that wireless sensor networks (WSNs) need to address is achieving security and privacy while keeping low power consumption at sensor nodes. Physically unclonable functions (PUFs) offer a challenge-response functionality that leverages the inherent variations in the manufacturing process of a device, making them an optimal solution for sensor node authentication in WSNs. Thus, identifiability is the fundamental property of any PUF.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Institute of Mechanical Process Engineering and Mechanics (MVM), KIT, Strasse am Forum 8, 76131, Karlsruhe, Germany.
Decentralized consensus on the state of the Bitcoin blockchain is ensured by proof of work. It relies on digital one-way functions and is associated with an enormous environmental impact. This paper conceptualizes a physical one-way function that aims to transform a digital, electricity-consuming consensus mechanism into a physical process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!