AI Article Synopsis

  • Accurate quantification of the carbon cycle in agroecosystems is essential for combating climate change and ensuring sustainable agriculture, but traditional modeling methods face significant uncertainties due to complex processes and insufficient data.
  • The Knowledge-Guided Machine Learning (KGML) framework enhances predictions by combining insights from process models, detailed remote sensing data, and machine learning techniques.
  • In testing on the U.S. Corn Belt, KGML demonstrated superior performance over traditional models, revealing 86% more detail in soil organic carbon changes and offering pathways for further model improvement applicable to other complex earth systems.

Article Abstract

Accurate and cost-effective quantification of the carbon cycle for agroecosystems at decision-relevant scales is critical to mitigating climate change and ensuring sustainable food production. However, conventional process-based or data-driven modeling approaches alone have large prediction uncertainties due to the complex biogeochemical processes to model and the lack of observations to constrain many key state and flux variables. Here we propose a Knowledge-Guided Machine Learning (KGML) framework that addresses the above challenges by integrating knowledge embedded in a process-based model, high-resolution remote sensing observations, and machine learning (ML) techniques. Using the U.S. Corn Belt as a testbed, we demonstrate that KGML can outperform conventional process-based and black-box ML models in quantifying carbon cycle dynamics. Our high-resolution approach quantitatively reveals 86% more spatial detail of soil organic carbon changes than conventional coarse-resolution approaches. Moreover, we outline a protocol for improving KGML via various paths, which can be generalized to develop hybrid models to better predict complex earth system dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10774286PMC
http://dx.doi.org/10.1038/s41467-023-43860-5DOI Listing

Publication Analysis

Top Keywords

machine learning
12
carbon cycle
12
knowledge-guided machine
8
conventional process-based
8
learning improve
4
carbon
4
improve carbon
4
cycle quantification
4
quantification agroecosystems
4
agroecosystems accurate
4

Similar Publications

deep-AMPpred: A Deep Learning Method for Identifying Antimicrobial Peptides and Their Functional Activities.

J Chem Inf Model

January 2025

School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui 230036, China.

Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years.

View Article and Find Full Text PDF

Background: Falls are among the most prevalent workplace accidents, necessitating thorough screening for susceptibility to falls and customization of individualized fall prevention programs. The aim of this study was to develop and validate a high fall risk prediction model using machine learning (ML) and video-based first three steps in middle-aged workers.

Methods: Train data (n=190, age 54.

View Article and Find Full Text PDF

Background: Neoadjuvant chemotherapy is standard for advanced esophageal squamous cell carcinoma, though often ineffective. Therefore, predicting the response to chemotherapy before treatment is desirable. However, there is currently no established method for predicting response to neoadjuvant chemotherapy.

View Article and Find Full Text PDF

The Impact of Artificial Intelligence and Machine Learning in Organ Retrieval and Transplantation: A Comprehensive Review.

Curr Res Transl Med

January 2025

Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom; Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, United Kingdom.

This narrative review examines the transformative role of Artificial Intelligence (AI) and Machine Learning (ML) in organ retrieval and transplantation. AI and ML technologies enhance donor-recipient matching by integrating and analyzing complex datasets encompassing clinical, genetic, and demographic information, leading to more precise organ allocation and improved transplant success rates. In surgical planning, AI-driven image analysis automates organ segmentation, identifies critical anatomical features, and predicts surgical outcomes, aiding pre-operative planning and reducing intraoperative risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!