Soy isoflavones induces mitophagy to inhibit the progression of osteosarcoma by blocking the AKT/mTOR signaling pathway.

Mol Med

Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116000, Liaoning, China.

Published: January 2024

Background: Soy isoflavones (SI) is a natural bioactive substance exhibiting beneficial effects on human health. This study aims to elucidate the therapeutic potential of SI in the treatment of osteosarcoma (OS) and to investigate the underlying mechanisms, particularly focusing on mitophagy.

Methods: The effects of SI on the proliferation, apoptosis, migration, and invasion of U2OS cells were analyzed. Mitophagy was assessed through multiple parameters: mitochondrial autophagosomes, mitochondrial membrane potential, autophagy-related proteins, reactive oxygen species (ROS), and oxygen consumption rate (OCR). Protein levels related to apoptosis, autophagy, and the AKT/mTOR pathway were analyzed using western blot. The therapeutic efficacy of SI was further identified using a mouse tumor xenograft model. Cell apoptosis and proliferation in tumor xenografts were detected by TUNEL staining and immunohistochemistry (IHC), respectively.

Results: SI dose-dependently suppressed the viability, colony formation, migration, and invasion of U2OS cells, and enhanced the apoptosis. SI also dose-dependently induced mitophagy in OS cells, evidenced by an increase in autophagosomes and ROS levels, a decrease in mitochondrial membrane potential and OCR, and concomitant changes in autophagy-related proteins. Mdivi-1, an inhibitor of mitophagy, reversed the anti-tumor effects of SI on U2OS cells. In addition, SI blocked the AKT/mTOR pathway in U2OS cells. SC-79, an AKT agonist, reversed the effect of SI on inducing mitophagy. Moreover, SI also promoted cell apoptosis and mitophagy in tumor xenografts in vivo.

Conclusions: SI induces mitophagy in OS cells by blocking the AKT/mTOR pathway, contributing to the inhibition of OS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10775635PMC
http://dx.doi.org/10.1186/s10020-024-00778-yDOI Listing

Publication Analysis

Top Keywords

u2os cells
16
akt/mtor pathway
12
soy isoflavones
8
induces mitophagy
8
blocking akt/mtor
8
migration invasion
8
invasion u2os
8
mitochondrial membrane
8
membrane potential
8
autophagy-related proteins
8

Similar Publications

Synthetic anti-RNA antibody derivatives for RNA visualization in mammalian cells.

Nucleic Acids Res

December 2024

Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.

Although antibody derivatives, such as Fabs and scFvs, have revolutionized the cellular imaging, quantification and tracking of proteins, analogous tools and strategies are unavailable for cellular RNA visualization. Here, we developed four synthetic anti-RNA scFv (sarabody) probes and their green fluorescent protein (GFP) fusions and demonstrated their potential to visualize RNA in live mammalian cells. We expressed these sarabodies and sarabody-GFP modules, purified them as soluble proteins, characterized their binding interactions with their corresponding epitopes and finally employed two of the four modules, sara1-GFP and sara1c-GFP, to visualize a target messenger RNA in live U2OS cells.

View Article and Find Full Text PDF

CHAMP1 premature termination codon mutations found in individuals with intellectual disability cause a homologous recombination defect through haploinsufficiency.

Sci Rep

December 2024

Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.

CHAMP1 (chromosome alignment-maintaining phosphoprotein 1) plays a role in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). The CHAMP1 gene is one of the genes mutated in individuals with intellectual disability. The majority of the mutations are premature termination codon (PTC) mutations, while missense mutations have also been reported.

View Article and Find Full Text PDF

Immunofluorescence is highly dependent on antibody-antigen interactions for accurate visualization of proteins and other biomolecules within cells. However, obtaining antibodies with high specificity and affinity for their target proteins can be challenging, especially for targets that are complex or naturally present at low levels. Therefore, we developed AptaFluorescence, a protocol that utilizes fluorescently labeled aptamers for in vitro biomolecule visualization.

View Article and Find Full Text PDF

Curcumin suppresses metastasis, invasion, and proliferation in osteosarcoma cells by regulating the EGFR/Src signaling axis.

Int J Immunopathol Pharmacol

December 2024

Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P. R. China.

We explored the biological mechanisms by which curcumin (Cur) confronts osteosarcoma (OS) tumorigenesis and potential drug gene targets based on network pharmacology and in vitro cell experiments. Cur has been recognized for its significant role in combating various types of tumors. However, the intrinsic molecular mechanisms through which it affects OS remain uncharted.

View Article and Find Full Text PDF

Promyelocytic leukemia (PML) protein forms the scaffold for PML nuclear bodies (PML NB) that reorganize into Lipid-Associated PML Structures (LAPS) under fatty acid stress. We determined how the fatty acid oleate alters the interactome of PMLI or PMLII by expressing fusions with the ascorbate peroxidase APEX2 in U2OS cells. The resultant interactome included ESCRT and COPII transport protein nodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!