Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are metabolic enzymes that interconvert isocitrate and 2-oxoglutarate (2OG). Gain-of-function mutations in and occur in a number of cancers, including acute myeloid leukemia, glioma, cholangiocarcinoma, and chondrosarcoma. These mutations cripple the wild-type activity of IDH and cause the enzymes to catalyze a partial reverse reaction in which 2OG is reduced but not carboxylated, resulting in production of the ()-enantiomer of 2-hydroxyglutarate (()-2HG). ()-2HG accumulation in tumors results in profound dysregulation of cellular metabolism. The most well-characterized oncogenic effects of ()-2HG involve the dysregulation of 2OG-dependent epigenetic tumor-suppressor enzymes. However, ()-2HG has many other effects in cells, some that promote transformation and others that induce metabolic dependencies. Herein, we review how cancer-associated mutations impact epigenetic regulation and cellular metabolism and discuss how these effects can potentially be leveraged to therapeutically target tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065172 | PMC |
http://dx.doi.org/10.1101/cshperspect.a041537 | DOI Listing |
Int J Mol Sci
January 2025
Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
Glutamine metabolism is essential for infectious spleen and kidney necrosis virus (ISKNV) replication. Glutaminase 1 (GLS1), the key enzyme of the glutamine metabolism, and c-Myc positively regulate ISKNV infection, while c-Myc is closely correlated with GLS1. However, the regulatory mechanism among ISKNV, c-Myc and glutamine metabolism remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore 308433, Singapore.
Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Neurology, Division of Neuro-Oncology, University of California, Irvine, CA 92697, USA.
: Anaplastic oligodendrogliomas (AOs) are central nervous system (CNS) World Health Organization (WHO) grade 3 gliomas characterized by isocitrate dehydrogenase (IDH) mutation (m)IDH and 1p/19q codeletion. AOs are typically treated with surgery and chemoradiation. However, chemoradiation can cause detrimental late neurocognitive morbidities and an accelerated disease course.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
Melatonin (Mel) is a tryptophan-derived (N-acetyl-5-methoxytryptamine) molecule. In the present study, role of Mel in the regulation of various anaplerotic enzymes is discussed in relation to N metabolism and H-ATPase activity in mung bean under Cd stress. The application of Mel to the Cd-stressed mung bean seedlings was remarkable in improving the activity of hexokinase (35.
View Article and Find Full Text PDFCurr Oncol
January 2025
Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
Mutations in isocitrate dehydrogenase (IDH) genes are among the most frequently encountered molecular alterations in cholangiocarcinoma (CCA). These neomorphic point mutations endow mutant IDH (mIDH) with the ability to generate an R-enantiomer of 2-hydroxyglutarate (R2HG), a metabolite that drives malignant transformation through aberrant epigenetic signaling. As a result, pharmacologic inhibition of mIDH has become an attractive therapeutic strategy in CCAs harboring this mutation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!