With the implementation of municipal solid waste source segregation, the enormous sorted biogenic waste has become an issue that needs to be seriously considered. Anaerobic digestion, which can produce biogas and extract floating oil for biodiesel production, is the most prevalent treatment in China for waste management and greenhouse gas (GHG) emissions reduction, in accordance with Sustainable Development Goal 13 of the United Nations. Herein, a large-scale biogas plant with a capacity of 1000 tonnes of biogenic waste (400 tonnes of restaurant biogenic waste and 600 tonnes of kitchen biogenic waste) per day was investigated onsite using material flow analysis, and the parts of the biogas plant were thoroughly analyzed, especially the pretreatment system for biogenic waste impurity removal and homogenization. The results indicated that the loss of the total biodegradable organic matter was 41.8% (w/w) of daily feedstock and the loss of biogas potential was 18.8% (v/v) of daily feedstock. Life cycle assessment revealed that the 100-year GHG emissions were -61.2 kgCO-eq per tonne biogenic waste. According to the sensitivity analysis, pretreatment efficiency, including biodegradable organic matter recovery and floating oil extraction, considerably affected carbon reduction potential. However, when the pretreatment efficiency deteriorated, GHG benefits of waste source segregation and the subsequent biogenic waste anaerobic digestion would be reduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2024.118139 | DOI Listing |
Int J Mol Sci
January 2025
Centro de Investigación y Desarrollo de Nanomedicinas (CIDeN), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876 Bernal, Argentina.
The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate ( extract (YME)-biogenic silver nanoparticles (BSs), and [BS + BS-nanoARC], consistent of a BS-nanoARC core covered by an outer shell of BSs, were structurally characterized and their therapeutic activities screened. By employing 109 ± 5 µg gallic acid equivalents (GAEs) and 73.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Department of Life Sciences, Università Degli Studi di Modena e Reggio Emilia, Via Campi 103, Modena, 41125, Italy; Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia (CTNSC), Via Fossato di Mortara 17-19, Ferrara, 44121, Italy.
According to the Food and Agriculture Organization of the United Nations (FAO) more than 14% of the world's food production is lost every year before reaching retail, and another 17% is lost during the retail stage. The use of the expiration date as the main estimator of the life-end of food products creates unjustified food waste. Sensors capable of quantifying the effective food freshness and quality could substantially reduce food waste and enable more effective management of the food chain.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Advanced Materials, Central Metallurgical R & D Institute (CMRDI), P.O. box 87, Helwan, Cairo, Egypt.
An overview of various industrial and bio-applications of unavoidable bio-waste materials reported in the literature over the last 25 years is presented in this review. Calcium-based food wastes or "unavoidable bio-wastes" are hybrid bio-composite materials, consisting of a softer organic matrix surrounding a stiff mineralized ceramic phase. A wide range of different bio-wastes that are already in use or are investigated for multipurpose applications are presented.
View Article and Find Full Text PDFWaste Manag
December 2024
Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, No.333 Longteng Road, Songjiang District, Shanghai 201620, China. Electronic address:
Bio-based and biodegradable (bio-)plastics are heralded as a key solution to mitigate plastic pollution and reduce CO emissions. Yet, their end-of-life treatments embodies complex energy and material interactions, potentially leading to emissions through incineration or recycling. This study investigates the cradle-to-grave, emphasizing the waste management stage, carbon footprint for several types of bio-plastics, leveraging both GWP100a and CO uptake methods to explore the carbon reduction benefits of recycling over disposal.
View Article and Find Full Text PDFTrends Biotechnol
December 2024
Manchester Institute of Biotechnology (MIB), Department of Chemistry, University of Manchester, Manchester, M1 7DN, UK. Electronic address:
Biogenic waste-derived feedstocks for production of fuels, chemicals, and materials offer great potential supporting the transition to net-zero and greater circularity. However, such feedstocks are heterogeneous and subject to geographical and seasonal variability. Here, we show that, through careful strain selection and metabolic engineering, Pseudomonas putida can be employed to permit efficient co-utilization of highly heterogeneous substrate compositions derived from hydrolyzed mixed municipal-like waste fractions (food, plastic, organic, paper, cardboard, and textiles) for growth and synthesis of exemplar bioproducts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!