A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integration of network pharmacology and serum medicinal chemistry to investigate the pharmacological mechanisms of QiZhuYangGan Decoction in the treatment of hepatic fibrosis. | LitMetric

Integration of network pharmacology and serum medicinal chemistry to investigate the pharmacological mechanisms of QiZhuYangGan Decoction in the treatment of hepatic fibrosis.

J Ethnopharmacol

College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, China; Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. Electronic address:

Published: April 2024

Ethnopharmacological Relevance: Qizhuyanggan Decoction (QZD), a traditional Chinese medicine formula, is frequently utilized in clinical practice for managing hepatic fibrosis. However, the specific target and mechanism of action of QZD for hepatic fibrosis treatment remain unknown.

Aim Of The Study: By combining network pharmacology, serum medicinal chemistry, and experimental validation methods, our study aimed to investigate the therapeutic effects of QZD on hepatic fibrosis, the anti-hepatic fibrosis active ingredients, and the possible mechanism of anti-hepatic fibrosis action.

Materials And Methods: The study aimed to investigate the therapeutic effect of QZD on hepatic fibrosis induced by CCl in SD rats, as well as its mechanism of action. The rats were anesthetized intraperitoneally using 3% pentobarbital and were executed after asphyxiation with high concentrations of carbon dioxide. Several techniques were employed to evaluate the efficacy of QZD, including ELISA, Western blot, HYP reagent assay, and various pathological examinations such as HE, Masson, Sirius Red staining, and immunohistochemistry (IHC). Additionally, serum biochemical assays were conducted to assess the effect of QZD on liver injury. Network pharmacology, UPLC, molecular docking, and molecular dynamics simulation were utilized to explore the mechanism of QZD in treating hepatic fibrosis. Finally, experimental validation was performed through ELISA, IHC, RT-qPCR, and Western blot analysis.

Result: Liver histopathology showed that QZD reduced inflammation and inhibited collagen production, and QZD significantly reduced HA and LN content to treat hepatic fibrosis. Serum biochemical analysis showed that QZD improved liver injury. Network pharmacology combined with UPLC screened six active ingredients and obtained 87 targets for the intersection of active ingredients and diseases. The enrichment analysis results indicated that the PI3K/AKT pathway might be the mechanism of action of QZD in the treatment of hepatic fibrosis, and counteracting the inflammatory response might be one of the pathways of action of QZD. Molecular docking and molecular dynamics simulations showed that the active ingredient had good binding properties with PI3K, AKT, and mTOR proteins. Western blot, ELISA, PCR, and IHC results indicated that QZD may treat hepatic fibrosis by inhibiting the PI3K/AKT/mTOR pathway and suppressing M1 macrophage polarization, while also promoting M2 macrophage polarization.

Conclusions: QZD may be effective in the treatment of hepatic fibrosis by inhibiting the PI3K/AKT/mTOR signaling pathway and M1 macrophage polarization, while promoting M2 macrophage polarization. This provides a strong basis for the clinical application of QZD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2024.117730DOI Listing

Publication Analysis

Top Keywords

hepatic fibrosis
40
network pharmacology
16
qzd
15
treatment hepatic
12
fibrosis
12
mechanism action
12
action qzd
12
qzd hepatic
12
active ingredients
12
western blot
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!