Decentralised wastewater treatment is becoming a suitable strategy to reduce cost and environmental impact. In this research, the performance of two technologies treating black water (BW) and grey water (GW) fractions of urban sewage is carried out in a decentralised treatment of the wastewater produced in three office buildings. An Anaerobic Membrane Bioreactor (AnMBR) treating BW and a Hybrid preanoxic Membrane Bioreactor (H-MBR) containing small plastic carrier elements, treating GW were operated at pilot scale. Their potential on reducing the release of contaminants of emerging concern (CECs) such as Organic Micropollutants (OMPs), Antibiotic Resistance Genes (ARGs) and pathogens was studied. After 226 d of operation, a stable operation was achieved in both systems: the AnMBR removed 92.4 ± 2.5 % of influent COD, and H-MBR removed 89.7 ± 3.5 %. Regarding OMPs, the profile of compounds differed between BW and GW, being BW the matrix with more compounds detected at higher concentrations (up to μg L). For example, in the case of ibuprofen the concentrations in BW were 23.63 ± 3.97 μg L, 3 orders of magnitude higher than those detected in GW. The most abundant ARGs were sulfonamide resistant genes (sul1) and integron class 1 (intl1) in both BW and GW. Pathogenic bacteria counts were reduced between 1 and 3 log units in the AnMBR. Bacterial loads in GW were much lower than in BW, being no bacterial re-growth observed for the GW effluents after treatment in the H-MBR. None of the selected enteric viruses was detected in GW treatment line.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.169863 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!