[Potential of AI for the Treatment of Acute Respiratory Distress Syndrome (ARDS)].

Anasthesiol Intensivmed Notfallmed Schmerzther

Published: January 2024

Acute respiratory distress syndrome (ARDS) is still associated with high mortality rates and poses a significant, vital threat to ICU patients because this syndrome is often detected too late (or not at all), and timely therapy and the fastest possible elimination of the underlying causes thus fail to materialize. Artificial Intelligence (AI) solutions can enable clinicians to make every minute in the ICU work for the patient by processing and analyzing all relevant data, thus supporting early diagnosis, adhering to clinical guidelines, and even providing a prognosis for the course of the ICU. This article shows what is already possible and where further challenges lie in this field of digital medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-2043-8644DOI Listing

Publication Analysis

Top Keywords

acute respiratory
8
respiratory distress
8
distress syndrome
8
[potential treatment
4
treatment acute
4
syndrome ards]
4
ards] acute
4
syndrome ards
4
ards associated
4
associated high
4

Similar Publications

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) encompass various etiologies and are distinguished by the onset of acute pulmonary inflammation and heightened permeability of the pulmonary vasculature, often leading to substantial morbidity and frequent mortality. There is a scarcity of viable approaches for treating effectively. In recent decades, acupuncture has been proven to be antiinflammatory.

View Article and Find Full Text PDF

Articles' retraction during the pandemic: COVID-19 is not the pacemaker.

Ann Transl Med

December 2024

Medical Direction, Rovereto Hospital, Provincial Agency for Social and Sanitary Services (APSS), Trento, Italy.

View Article and Find Full Text PDF

The purpose of this work is to evaluate the feasibility of lung imaging using 3D electrical impedance tomography (EIT) during spontaneous breathing trials (SBTs) in patients with acute hypoxic respiratory failure. EIT is a noninvasive, nonionizing, real-time functional imaging technique, suitable for bedside monitoring in critically ill patients. EIT data were collected in 24 mechanically ventilated patients immediately preceding and during a SBT on two rows of 16 electrodes using a simultaneous multicurrent source EIT system for 3D imaging.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is the causative agent of the emerging zoonotic respiratory disease. One of the most important prerequisites for combating emerging diseases is the development of vaccines within a short period of time. In this study, antigen-irradiated, inactivated SARS-CoV-2 viruses and the disaccharide trehalose were used to enhance immune responses in the Syrian hamster.

View Article and Find Full Text PDF

Expression, purification and immunogenicity analyses of receptor binding domain protein of severe acute respiratory syndrome coronavirus 2 from delta variant.

Vet Res Forum

December 2024

Institute of Pathogenic Microbiology, College of Biological Science and Engineering, and Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, China.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. The receptor binding domain (RBD), located at the spike protein of SARS-CoV-2, contains most of the neutralizing epitopes during viral infection and is an ideal antigen for vaccine development. In this study, bioinformatic analysis of the amino acid sequence data of SARS-CoV-2 RBD protein for the better understanding of molecular characteristics was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!