Plant-wearable sensors provide real-time information that enables pesticide inputs to be finely tuned and play critical roles in precision agriculture. However, tracking pesticide information in living plants remains a formidable challenge owing to inadequate shape adaptabilities and low in-field sensor sensitivities. In this study, plant-wearable hydrogel discs are designed by embedding a dual-shelled upconversion-nanoparticles@zeolitic-imidazolate-framework@polydopamine (UCNPs@ZIF@PDA) composite in double-network hydrogels to deliver on-site pesticide-residue information. Benefiting from the enzyme-mimetic catalytic activity of ZIFs and enzyme triggered-responsive property of PDA shell, the hydrogel discs are endowed with high sensing sensitivity toward 2,4-dichlorophenoxyacetic acid pesticide at the nanogram per milliliter level via boosting fluorescence quenching efficiency. Notably, hydrogel discs mounted on tomato plants exhibit sufficient adaptability to profile dynamic pesticide degradation when used in conjunction with an ImageJ processing algorithm, which is practically applicable. Such hydrogel discs form a noninvasive and low-cost toolkit for the on-site acquisition of pesticide information, thereby contributing to the precise management of the health status of a plant and the judicious development of precision agriculture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202311144 | DOI Listing |
Biosensors (Basel)
December 2024
School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada.
Receptor-based biosensors often suffer from slow analyte diffusion, leading to extended assay times. Moreover, existing methods to enhance diffusion can be complex and costly. In response to this challenge, we presented a rapid and cost-effective technique for fabricating concave magnetic-responsive hydrogel discs (CMDs) by straightforward pipetting directly onto microscope glass slides.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu 610041, China.
Intervertebral disc degeneration is characterized by a localized, chronic inflammatory response leading to a synthesis/catabolism imbalance within the nucleus pulposus (NP) and progressive functional impairment within the NP. Polyphenol molecules have been widely used in anti-inflammatory therapies in recent years; therefore, we designed an injectable, temperature-sensitive hydrogel PLGA-PEG-PLGA-based drug delivery system for local and sustained delivery of two drugs tannic acid (TA) and resveratrol (Res), with the hydrogel carrying TA directly and Res indirectly (carried directly by inflammation-responsive nanoparticles). The delivery system presents good injectability at room temperature and forms a gel in situ upon entering the intervertebral disc.
View Article and Find Full Text PDFMil Med Res
December 2024
Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
Bioactive peptides and proteins (BAPPs) are promising therapeutic agents for tissue repair with considerable advantages, including multifunctionality, specificity, biocompatibility, and biodegradability. However, the high complexity of tissue microenvironments and their inherent deficiencies such as short half-live and susceptibility to enzymatic degradation, adversely affect their therapeutic efficacy and clinical applications. Investigating the fundamental mechanisms by which BAPPs modulate the microenvironment and developing rational delivery strategies are essential for optimizing their administration in distinct tissue repairs and facilitating clinical translation.
View Article and Find Full Text PDFMater Today Bio
December 2024
Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Mater Today Bio
December 2024
Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
Nucleus pulposus (NP) cells, situated at the core of intervertebral discs, have acclimated to a hypoxic environment, orchestrating the equilibrium of extracellular matrix metabolism (ECM) under the regulatory influence of hypoxia inducible factor-1α (HIF-1α). Neovascularization and increased oxygen content pose a threat, triggering ECM degradation and intervertebral disc degeneration (IVDD). To address this, our study devised an oxygen-controllable strategy, introducing laccase into an injectable and ultrasound-responsive gelatin/agarose hydrogel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!