This study proposes a set of generic rules to revise existing neural networks for 3D point cloud processing to rotation-equivariant quaternion neural networks (REQNNs), in order to make feature representations of neural networks to be rotation-equivariant and permutation-invariant. Rotation equivariance of features means that the feature computed on a rotated input point cloud is the same as applying the same rotation transformation to the feature computed on the original input point cloud. We find that the rotation-equivariance of features is naturally satisfied, if a neural network uses quaternion features. Interestingly, we prove that such a network revision also makes gradients of features in the REQNN to be rotation-equivariant w.r.t. inputs, and the training of the REQNN to be rotation-invariant w.r.t. inputs. Besides, permutation-invariance examines whether the intermediate-layer features are invariant, when we reorder input points. We also evaluate the stability of knowledge representations of REQNNs, and the robustness of REQNNs to adversarial rotation attacks. Experiments have shown that REQNNs outperform traditional neural networks in both terms of classification accuracy and robustness on rotated testing samples.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2023.3346383DOI Listing

Publication Analysis

Top Keywords

neural networks
20
point cloud
16
rotation-equivariant quaternion
8
quaternion neural
8
networks point
8
cloud processing
8
feature computed
8
input point
8
wrt inputs
8
neural
6

Similar Publications

Analog In-memory Computing (IMC) has demonstrated energy-efficient and low latency implementation of convolution and fully-connected layers in deep neural networks (DNN) by using physics for computing in parallel resistive memory arrays. However, recurrent neural networks (RNN) that are widely used for speech-recognition and natural language processing have tasted limited success with this approach. This can be attributed to the significant time and energy penalties incurred in implementing nonlinear activation functions that are abundant in such models.

View Article and Find Full Text PDF

The opioid crisis has disproportionately affected U.S. veterans, leading the Veterans Health Administration to implement opioid prescribing guidelines.

View Article and Find Full Text PDF

Super-resolution (SR) neural networks transform low-resolution optical microscopy images into SR images. Application of single-image SR (SISR) methods to long-term imaging has not exploited the temporal dependencies between neighboring frames and has been subject to inference uncertainty that is difficult to quantify. Here, by building a large-scale fluorescence microscopy dataset and evaluating the propagation and alignment components of neural network models, we devise a deformable phase-space alignment (DPA) time-lapse image SR (TISR) neural network.

View Article and Find Full Text PDF

Background: Minimizing radiation exposure is crucial in monitoring adolescent idiopathic scoliosis (AIS). Generative adversarial networks (GANs) have emerged as valuable tools being able to generate high-quality synthetic images. This study explores the use of GANs to generate synthetic sagittal radiographs from coronal views in AIS patients.

View Article and Find Full Text PDF

Construction of a rodent neural network-skeletal muscle assembloid that simulate the postnatal development of spinal cord motor neuronal network.

Sci Rep

January 2025

Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.

Neuromuscular diseases usually manifest as abnormalities involving motor neurons, neuromuscular junctions, and skeletal muscle (SkM) in postnatal stage. Present in vitro models of neuromuscular interactions require a long time and lack neuroglia involvement. Our study aimed to construct rodent bioengineered spinal cord neural network-skeletal muscle (NN-SkM) assembloids to elucidate the interactions between spinal cord neural stem cells (SC-NSCs) and SkM cells and their biological effects on the development and maturation of postnatal spinal cord motor neural circuits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!