A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Light-Induced Liposomal Drug Delivery with an Amphiphilic Porphyrin and Its Chlorin and Bacteriochlorin Analogues. | LitMetric

The development of targeted drug delivery mechanisms in the human body is a matter of growing interest in medical science. The selective release of therapeutic agents at a specific target site can increase the therapeutical efficiency and at the same time reduce the side effects. Light-sensitive liposomes can release a drug by an externally controlled light trigger. Liposomes containing photosensitizers that can be activated in the longer wavelength range (650-800 nm) are particularly intriguing for medical purposes. This is because light penetration into a tissue is more efficient within this wavelength range, increasing their potential applications. For this study, liposomes with an encapsulated amphiphilic photosensitizer, the porphyrin 5,10-DiOH (5,10-di(4-hydroxyphenyl)-15,20-diphenyl-21,23-porphyrin), its chlorin (5,10-DiOH-chlorin) and its bacteriochlorin (5,10-DiOH-bacteriochlorin) were synthesized. The porphyrin 5,10-DiOH showed previously effective cargo release after liposomal encapsulation when irradiated at a wavelength of 420 nm. The new synthesized chlorin and bacteriochlorin photosensitizers show additional absorption bands in the longer wavelength range, which would enable excitation in deeper layers of tissue. Effective cargo release with chlorin at a longer wavelength of 650 nm and bacteriochlorin at 740 nm was possible. Irradiation of chlorin allowed more than 75% of the cargo to be released and more than 60% for bacteriochlorin. The new liposomes would enable selective drug release in deeper tissue layers and expand the range of possible applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.3c00749DOI Listing

Publication Analysis

Top Keywords

longer wavelength
12
wavelength range
12
drug delivery
8
chlorin bacteriochlorin
8
porphyrin 510-dioh
8
effective cargo
8
cargo release
8
chlorin
5
bacteriochlorin
5
release
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!