The correlation properties of a random system of densely packed disks, obeying a power-law size distribution, are analyzed in reciprocal space in the thermodynamic limit. This limit assumes that the total number of disks increases infinitely, while the mean density of the disk centers and the range of the size distribution are kept constant. We investigate the structure factor dependence on momentum transfer across various number of disks and extrapolate these findings to the thermodynamic limit. The fractal power-law decay of the structure factor is recovered in reciprocal space within the fractal range, which corresponds to the range of the size distribution in real space. The fractal exponent coincides with the exponent of the power-law size distribution as was shown previously by the authors of the work of Cherny et al. [J. Chem. Phys. 158(4), 044114 (2023)]. The dependence of the structure factor on density is examined. As is found, the power-law exponent remains unchanged but the fractal range shrinks when the packing fraction decreases. Additionally, the finite-size effects are studied at extremely low momenta of the order of the inverse system size. We show that the structure factor is parabolic in this region and calculate the prefactor analytically. The obtained results reveal fractal-like properties of the packing and can be used to analyze small-angle scattering from such systems.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0177530DOI Listing

Publication Analysis

Top Keywords

size distribution
20
structure factor
16
power-law size
12
thermodynamic limit
12
reciprocal space
8
number disks
8
range size
8
space fractal
8
fractal range
8
size
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!