Phase behaviour and dynamics of three-dimensional active dumbbell systems.

Soft Matter

CNRS, Laboratoire de Physique Théorique et Hautes Energies, LPTHE, Sorbonne Université, F-75005 Paris, France.

Published: January 2024

We present a comprehensive numerical study of the phase behavior and dynamics of a three-dimensional active dumbbell system with attractive interactions. We demonstrate that attraction is essential for the system to exhibit nontrivial phases. We construct a detailed phase diagram by exploring the effects of the system's activity, density, and attraction strength. We identify several distinct phases, including a disordered, a gel, and a completely phase-separated phase. Additionally, we discover a novel dynamical phase, that we name percolating network, which is characterized by the presence of a spanning network of connected dumbbells. In the phase-separated phase we characterize numerically and describe analytically the helical motion of the dense cluster.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3sm01030aDOI Listing

Publication Analysis

Top Keywords

dynamics three-dimensional
8
three-dimensional active
8
active dumbbell
8
phase-separated phase
8
phase
6
phase behaviour
4
behaviour dynamics
4
dumbbell systems
4
systems comprehensive
4
comprehensive numerical
4

Similar Publications

Objective: Despite several surgical options, there has yet to be a consensus on the best treatment for femoral neck fracture (FNF) due to higher complication rates compared to other bone fractures. This study aims to examine the possible consequences and solution suggestions of changing screws during surgery for various reasons in FNF surgical treatment from a biomechanical perspective.

Method: FNF and treatment materials were analyzed biomechanically using a package program based on the finite element method (FEM).

View Article and Find Full Text PDF

Histone deacetylase (HDAC)-6 has overwhelming implications in multiple cancers and neurodegenerative disorders. Unusual HDAC6 expression modulates various signalling mechanisms which in turn forms the aetiology of the above-mentioned disorders. Thus, restoring the typical activity of HDAC6 through small molecules may prove as a promising approach to beat these disorders.

View Article and Find Full Text PDF

A simple three-dimensional microfluidic platform for studying chemotaxis and cell sorting.

Lab Chip

January 2025

James Watt School of Engineering, Advanced Research Centre (ARC), University of Glasgow, Chapel Lane, Glasgow G11 6EW, UK.

Microbial chemotaxis plays a key role in a diversity of biological and ecological processes. Although microfluidics-based assays have been applied to investigate bacterial chemotaxis, retrieving chemotactic cells off-chip based on their dynamic chemotactic responses remains limited. Here, we present a simple three-dimensional microfluidic platform capable of programmable delivery of solutions, maintaining static, stable gradients for over 20 hours, followed by active sorting and retrieval of bacteria based on their chemotactic phenotypes.

View Article and Find Full Text PDF

Mass Spectrometry-Based Protein Footprinting for Protein Structure Characterization.

Acc Chem Res

January 2025

Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States.

ConspectusProtein higher-order structure (HOS) is key to biological function because the mechanisms of protein machinery are encoded in protein three-dimensional structures. Mass spectrometry (MS)-based protein footprinting is advancing protein structure characterization by mapping solvent-accessible regions of proteins and changes in H-bonding, thereby providing higher order structural information. Footprinting provides insights into protein dynamics, conformational changes, and interactions, and when conducted in a differential way, can readily reveal those regions that undergo conformational change in response to perturbations such as ligand binding, mutation, thermal stress, or aggregation.

View Article and Find Full Text PDF

Modeling and analysis of explicit dynamics of foot landing.

Med Biol Eng Comput

January 2025

School of Medical Engineering, Department of Cardiology of The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, 453003, Henan, China.

The research aims to investigate the mechanical response of footfalls at different velocities to understand the mechanism of heel injury and provide a scientific basis for the prevention and treatment of heel fractures. A three-dimensional solid model of foot drop was constructed using anatomical structures segmented from medical CT scans, including bone, cartilage, ligaments, plantar fascia, and soft tissues, and the impact velocities of the foot were set to be 2 m/s, 4 m/s, 6 m/s, 8 m/s, and 10 m/s. Explicit kinetic analysis methods were used to investigate the mechanical response of the foot landing with different speeds to explore the damage mechanism of heel bone at different impact velocities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!