Recently, andrographolide, kaempferol, maslinic acid, rutin, and schaftoside have been identified as potent SARS-CoV-2 main protease (Mpro) inhibitors molecular docking studies. However, no comprehensive testing of these compounds against Mpro has been conducted. In this study, we rigorously evaluated the inhibition of Mpro by these compounds using combinational experiments, including fluorescence resonance energy transfer (FRET), fluorescence polarization (FP), and dimerization-dependent red fluorescent protein (ddRFP) assays. Our data revealed that these compounds are not Mpro inhibitors based on the results from a set of assays. These results suggest that an efficient combination of a molecular docking approach and an experimental assay is essential for the discovery of Mpro inhibitors in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2023.2301466DOI Listing

Publication Analysis

Top Keywords

mpro inhibitors
12
sars-cov-2 main
8
main protease
8
combinational experiments
8
molecular docking
8
compounds mpro
8
mpro
5
evaluation natural
4
natural products
4
products virtual
4

Similar Publications

Amphibian-Derived Peptides as Natural Inhibitors of SARS-CoV-2 Main Protease (Mpro): A Combined In Vitro and In Silico Approach.

Chem Biodivers

January 2025

Universidad Nacional del Litoral Facultad de Bioquimica y Ciencias Biologicas, Química Orgánica, Ciudad Universitaria. Paraje el Pozo S/N, Argentina, 3000, Santa Fe, ARGENTINA.

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has highlighted the urgent need for novel therapeutic agents targeting viral enzymes such as the main protease (Mpro), which plays a crucial role in viral replication. In this study, we investigate the inhibitory potential of 23 peptides isolated from the skin of amphibians belonging to the Hylidae and Leptodactylidae families against SARS-CoV-2 Mpro. Five peptides demonstrated significant inhibition using a colorimetric Mpro inhibition assay, with IC50 values ranging from 41 to 203 µM.

View Article and Find Full Text PDF

The main protease (Mpro) of SARS-CoV-2 is an evolutionarily conserved drug discovery target. The present study mainly focused on chemoinformatics computational methods to investigate the efficacy of our newly designed trifluoromethyl-1,3,4-oxadiazole amide derivatives as SARS-CoV-2 Mpro inhibitors. Drug-likeness ADMET analysis, molecular docking simulation, density functional theory (DFT) and molecular dynamics simulation methods were included.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by SARS-CoV-2 continues to pose a major challenge to global health. Targeting the main protease of the virus (Mpro), which is essential for viral replication and transcription, offers a promising approach for therapeutic intervention. In this study, advanced computational techniques such as molecular docking and molecular dynamics simulations were used to screen a series of antiviral compounds for their potential inhibitory effect on the SARS-CoV-2 Mpro.

View Article and Find Full Text PDF

We identified a 5-fluoro-benzothiazole-containing small molecule, TKB272, through fluorine-scanning of the benzothiazole moiety, which more potently inhibits the enzymatic activity of SARS-CoV-2's main protease (M) and more effectively blocks the infectivity and replication of all SARS-CoV-2 strains examined including Omicron variants such as SARS-CoV-2 and SARS-CoV-2 than two M inhibitors: nirmatrelvir and ensitrelvir. Notably, the administration of ritonavir-boosted nirmatrelvir and ensitrelvir causes drug-drug interactions warranting cautions due to their CYP3A4 inhibition, thereby limiting their clinical utility. When orally administered, TKB272 blocked SARS-CoV-2 replication without ritonavir in B6.

View Article and Find Full Text PDF

Applications of Machine Learning Approaches for the Discovery of SARS-CoV-2 PLpro Inhibitors.

J Chem Inf Model

January 2025

Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, Maryland 20850, United States.

The global impact of SARS-CoV-2 highlights the need for treatments beyond vaccination, given the limited availability of effective medications. While Pfizer introduced , an FDA-approved antiviral targeting the SARS-CoV-2 main protease (Mpro), this study focuses on designing new antivirals against another protease, papain-like protease (PLpro), which is crucial for viral replication and immune suppression. NCATS/NIH performed a high-throughput screen of ∼15,000 molecules from an internal molecular library, identifying initial hits with a 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!