A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning Detection and Characterization of Splenic Injuries on Abdominal Computed Tomography. | LitMetric

AI Article Synopsis

  • Multi-detector contrast-enhanced abdominal CT scans are vital for accurately detecting and categorizing splenic injuries, which can improve patient management in emergency settings.
  • A machine learning system was developed to automate the interpretation of these scans using a 2-stage process involving segmentation and classification of spleen injuries based on the AAST grading system.
  • The study, analyzing 1,216 trauma protocol CT scans, demonstrated that the machine learning model achieved promising accuracy rates, suggesting significant potential for enhancing radiologist efficiency and prioritizing patient care in clinical practice.

Article Abstract

Background: Multi-detector contrast-enhanced abdominal computed tomography (CT) allows for the accurate detection and classification of traumatic splenic injuries, leading to improved patient management. Their effective use requires rapid study interpretation, which can be a challenge on busy emergency radiology services. A machine learning system has the potential to automate the process, potentially leading to a faster clinical response. This study aimed to create such a system.

Method: Using the American Association for the Surgery of Trauma (AAST), spleen injuries were classified into 3 classes: normal, low-grade (AAST grade I-III) injuries, and high-grade (AAST grade IV and V) injuries. Employing a 2-stage machine learning strategy, spleens were initially segmented from input CT images and subsequently underwent classification via a 3D dense convolutional neural network (DenseNet).

Results: This single-centre retrospective study involved trauma protocol CT scans performed between January 1, 2005, and July 31, 2021, totaling 608 scans with splenic injuries and 608 without. Five board-certified fellowship-trained abdominal radiologists utilizing the AAST injury scoring scale established ground truth labels. The model achieved AUC values of 0.84, 0.69, and 0.90 for normal, low-grade injuries, and high-grade splenic injuries, respectively.

Conclusions: Our findings demonstrate the feasibility of automating spleen injury detection using our method with potential applications in improving patient care through radiologist worklist prioritization and injury stratification. Future endeavours should concentrate on further enhancing and optimizing our approach and testing its use in a real-world clinical environment.

Download full-text PDF

Source
http://dx.doi.org/10.1177/08465371231221052DOI Listing

Publication Analysis

Top Keywords

splenic injuries
16
machine learning
12
injuries
8
abdominal computed
8
computed tomography
8
normal low-grade
8
aast grade
8
injuries high-grade
8
learning detection
4
detection characterization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!