A critical examination of human data for the biological activity of quercetin and its phase-2 conjugates.

Crit Rev Food Sci Nutr

Department of Nutrition, Dietetics and Food, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia.

Published: January 2024

This critical review examines evidence for beneficial effects of quercetin phase-2 conjugates from clinical intervention studies, volunteer feeding trials, and in vitro work. Plasma concentrations of quercetin-3--glucuronide (Q3G) and 3'-methylquercetin-3-glucuronide (3'MQ3G) after supplementation may produce beneficial effects in macrophages and endothelial cells, respectively, especially if endogenous deglucuronidation occurs, and lower blood uric acid concentration via quercetin-3'--sulfate (Q3'S). Unsupplemented diets produce much lower concentrations (<50 nmol/l) rarely investigated in vitro. At 10 nmol/l, Q3'S and Q3G stimulate or suppress, respectively, angiogenesis in endothelial cells. Statistically significant effects have been reported at 100 nmol/l in breast cancer cells (Q3G), primary neuron cultures (Q3G), lymphocytes (Q3G and3'MQ3G) and HUVECs (QG/QS mixture), but it is unclear whether these translate to a health benefit in vivo. More sensitive and more precise methods to measure clinically significant endpoints are required before a conclusion can be drawn regarding effects at normal dietary concentrations. Future requirements include better understanding of inter-individual and temporal variation in plasma quercetin phase-2 conjugates, their mechanisms of action including deglucuronidation and desulfation both in vitro and in vivo, tissue accumulation and washout, as well as potential for synergy or antagonism with other quercetin metabolites and metabolites of other dietary phytochemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408398.2023.2299329DOI Listing

Publication Analysis

Top Keywords

quercetin phase-2
8
phase-2 conjugates
8
beneficial effects
8
critical examination
4
examination human
4
human data
4
data biological
4
biological activity
4
activity quercetin
4
conjugates critical
4

Similar Publications

Gas-propelled anti-hair follicle aging microneedle patch for the treatment of androgenetic alopecia.

J Control Release

January 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China. Electronic address:

Existing treatments for androgenetic alopecia (AGA) are unsatisfactory, owing to the two major reasons: (1) Oxidative stress and vascularization deficiency in the perifollicular microenvironment provoke the premature senescence of hair follicles, limiting the transformation of hair growth cycle from the telogen to the anagen phase; (2) The amount of drug delivered to the perifollicular region located in the deep dermis is very limited for passive drug delivery systems. Herein, we developed a gas-propelled microneedle patch integrated with ferrum-chelated puerarin/quercetin nanoparticles (PQFN) to increase drug accumulation in hair follicles and reshape the perifollicular microenvironment for improved hair-regenerating effects. PQFN can rejuvenate testosterone (Tes)-induced senescence of dermal papilla cells by scavenging ROS, restoring mitochondrial function, regulating signaling pathways related to hair regeneration, and upregulating hair growth-promoting genes.

View Article and Find Full Text PDF

This study aimed to enhance the efficacy of quercetin (QT) by formulating it into a liposomal drug delivery system utilizing the concept of central composite design. The drug:lipid ratio, cholesterol concentration, and sonication time were selected as independent variables in the study. The vesicle and percentage entrapment efficiency were selected as the dependent variables.

View Article and Find Full Text PDF

Preclinical evidence demonstrates that senescent cells accumulate with aging and that senolytics delay multiple age-related morbidities, including bone loss. Thus, we conducted a phase 2 randomized controlled trial of intermittent administration of the senolytic combination dasatinib plus quercetin (D + Q) in postmenopausal women (n = 60 participants). The primary endpoint, percentage changes at 20 weeks in the bone resorption marker C-terminal telopeptide of type 1 collagen (CTx), did not differ between groups (median (interquartile range), D + Q -4.

View Article and Find Full Text PDF

A critical examination of human data for the biological activity of quercetin and its phase-2 conjugates.

Crit Rev Food Sci Nutr

January 2024

Department of Nutrition, Dietetics and Food, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia.

This critical review examines evidence for beneficial effects of quercetin phase-2 conjugates from clinical intervention studies, volunteer feeding trials, and in vitro work. Plasma concentrations of quercetin-3--glucuronide (Q3G) and 3'-methylquercetin-3-glucuronide (3'MQ3G) after supplementation may produce beneficial effects in macrophages and endothelial cells, respectively, especially if endogenous deglucuronidation occurs, and lower blood uric acid concentration via quercetin-3'--sulfate (Q3'S). Unsupplemented diets produce much lower concentrations (<50 nmol/l) rarely investigated in vitro.

View Article and Find Full Text PDF

The research aimed to establish a multidrug-resistant Klebsiella pneumoniae-induced genetic model for mastitis considering the alternative mechanisms of the DjlA-mediated CbpA protein regulation. The Whole Genome Sequencing of the newly isolated K. pneumoniae strain was conducted to annotate the frequently occurring antibiotic resistance and virulence factors following PCR and MALDI-TOF mass-spectrophotometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!