Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Covalent triazine frameworks (CTFs) have recently emerged as an efficient class of photocatalysts due to their structural diversity and excellent stability. Nevertheless, the synthetic reactions of CTFs have usually suffered from poor reversibility, resulting in a low crystallinity of the materials. Here, we report the introduction of methoxy groups on the monomer 2,5-diphenylthiazolo[5,4-]thiazole to reinforce interlayer π-π interactions of the resulting donor-acceptor type CTFs, which improved crystallinity, further increasing the visible light absorption range and allowing for efficient separation and transport of carriers. The morphology is strongly correlated to the wettability, which has a significant impact on the mass transfer capacity and photocatalytic activity in the photocatalytic reaction. To further improve crystallinity and photocatalytic activity, CTF-NWU-T3 photocatalysts in a bowl shape were prepared using a SiO template. The energy band structure, photocatalytic hydrogen evolution, and pollutant degradation efficiency of involved materials were investigated. The donor-acceptor type CTF-NWU-T3 with a bowl-shaped morphology, synthesized using the template method and the introduction of methoxy groups, exhibited an excellent photocatalytic hydrogen production rate of 32064 μmol·h·g. This study highlights the significance of improving donor-acceptor interactions and increasing the dispersibility of catalyst particles in dispersion to enhance the photocatalytic activity of heterogeneous photocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c15536 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!