A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MOVER-R and Penalized MOVER-R Confidence Intervals for the Ratio of Two Quantities. | LitMetric

Developing a confidence interval for the ratio of two quantities is an important task in statistics because of its omnipresence in real world applications. For such a problem, the MOVER-R (method of variance recovery for the ratio) technique, which is based on the recovery of variance estimates from confidence limits of the numerator and the denominator separately, was proposed as a useful and efficient approach. However, this method implicitly assumes that the confidence interval for the denominator never includes zero, which might be violated in practice. In this article, we first use a new framework to derive the MOVER-R confidence interval, which does not require the above assumption and covers the whole parameter space. We find that MOVER-R can produce an unbounded confidence interval, just like the well-known Fieller method. To overcome this issue, we further propose the penalized MOVER-R. We prove that the new method differs from MOVER-R only at the second order. It, however, always gives a bounded and analytic confidence interval. Through simulation studies and a real data application, we show that the penalized MOVER-R generally provides a better confidence interval than MOVER-R in terms of controlling the coverage probability and the median width.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10769102PMC
http://dx.doi.org/10.1080/00031305.2023.2173294DOI Listing

Publication Analysis

Top Keywords

confidence interval
24
penalized mover-r
12
mover-r
9
confidence
8
mover-r confidence
8
ratio quantities
8
interval
6
mover-r penalized
4
confidence intervals
4
intervals ratio
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!