Exploration of artificial aggregation-induced emission luminogens (AIEgens) has garnered extensive interest in the past two decades. In particular, AIEgens possessing natural characteristics (BioAIEgens) have received more attention recently due to the advantages of biocompatibility, sustainability and renewability. However, the extremely limited number of BioAIEgens extracted from natural sources have retarded their development. Herein, a new class of BioAIEgens based on the natural scaffold of chromene have been facilely synthesized via green reactions in a water system. These compounds show regiostructure-, polymorphism- and substituent-dependent fluorescence, which clearly illustrates the close relationship between the macroscopic properties and hierarchical structure of aggregates. Due to the superior biocompatibility of the natural scaffold, chromene-based BioAIEgens can specifically target the endoplasmic reticulum (ER) via the introduction of tosyl amide. This work has provided a new chromene scaffold for functional BioAIEgens on the basis of green and sustainable 'in-water' synthesis, applicable regiostructure-dependent fluorescence, and effective ER-specific imaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10769509 | PMC |
http://dx.doi.org/10.1093/nsr/nwad233 | DOI Listing |
Natl Sci Rev
March 2024
Department of Chemistry & Catalysis Research Center, School of Natural Sciences, Technical University of Munich, Germany.
Natl Sci Rev
November 2023
School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China.
Exploration of artificial aggregation-induced emission luminogens (AIEgens) has garnered extensive interest in the past two decades. In particular, AIEgens possessing natural characteristics (BioAIEgens) have received more attention recently due to the advantages of biocompatibility, sustainability and renewability. However, the extremely limited number of BioAIEgens extracted from natural sources have retarded their development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!