Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFb signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10769348PMC
http://dx.doi.org/10.1101/2023.12.21.572766DOI Listing

Publication Analysis

Top Keywords

alveolar simplification
28
myofibroblast proliferation
16
impaired myofibroblast
12
proliferation central
12
central feature
12
tgfβ signaling
12
alveolar
8
simplification
8
bpd
8
bpd pathogenesis
8

Similar Publications

Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear.

View Article and Find Full Text PDF

Alveolar epithelial type II cells (AEII) synthesize, store, and recycle surfactant. Lipids and primarily hydrophobic surfactant proteins (SPs) are stored in lamellar bodies (Lbs) while the hydrophilic SPs and the precursors of hydrophobic SPs are stored in multivesicular bodies (mvb). ErbB4-receptor and its ligand neuregulin (NRG) are important regulators of fetal lung development and fetal surfactant synthesis.

View Article and Find Full Text PDF

Lung epithelial progenitors use a complex network of known and predicted transcriptional regulators to influence early lung development. Here, we evaluate the function of one predicted regulator, Cux1, that we identified from transcriptional regulatory analysis of the SOX9+ distal lung progenitor network. We generated a new Cux1-floxed mouse model and created an epithelial-specific knockout of Cux1 using Shh-Cre (Cux1).

View Article and Find Full Text PDF
Article Synopsis
  • The SFTPC gene mutation (SFTPCI73T) is a major cause of interstitial lung disease, leading to limited treatment options.
  • Research shows that EMC3 is crucial for maintaining surfactant balance in alveolar type 2 cells and influences the metabolism of the SFTPCI73T mutation.
  • Findings indicate that deleting Emc3 can improve lung structure and function in mice with the SFTPCI73T mutation, revealing new therapeutic targets, particularly involving Valosin Containing Protein (VCP) for treatment.
View Article and Find Full Text PDF

Lung epithelial-endothelial-mesenchymal signaling network with hepatocyte growth factor as a hub is involved in bronchopulmonary dysplasia.

Front Cell Dev Biol

September 2024

Pediatric Intensive Care Unit, West China Second University Hospital, Sichuan University, Chengdu, China.

Bronchopulmonary dysplasia (BPD) is fundamentally characterized by the arrest of lung development and abnormal repair mechanisms, which result in impaired development of the alveoli and microvasculature. Hepatocyte growth factor (HGF), secreted by pulmonary mesenchymal and endothelial cells, plays a pivotal role in the promotion of epithelial and endothelial cell proliferation, branching morphogenesis, angiogenesis, and alveolarization. HGF exerts its beneficial effects on pulmonary vascular development and alveolar simplification primarily through two pivotal pathways: the stimulation of neovascularization, thereby enriching the pulmonary microvascular network, and the inhibition of the epithelial-mesenchymal transition (EMT), which is crucial for maintaining the integrity of the alveolar structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!