Pancreatic stellate cells (PSCs) are primarily responsible for producing the stiff tumor tissue in pancreatic ductal adenocarcinoma (PDAC). Thereby, PSCs generate a stiffness gradient between the healthy pancreas and the tumor. This gradient induces durotaxis, a form of directional cell migration driven by differential stiffness. The molecular sensors behind durotaxis are still unclear. To investigate the role of mechanosensitive ion channels in PSC durotaxis, we established a two-dimensional stiffness gradient mimicking PDAC. Using pharmacological and genetic methods, we investigated the role of the ion channels Piezo1, TRPC1, and TRPV4 in PSC durotaxis. We found that PSC migration towards a stiffer substrate is diminished by altering Piezo1 activity. Moreover, disrupting TRPC1 along with TRPV4 abolishes PSC durotaxis even when Piezo1 is functional. Hence, PSC durotaxis is optimal with an intermediary level of mechanosensitive channel activity, which we simulated using a numerically discretized mathematical model. Our findings suggest that mechanosensitive ion channels, particularly Piezo1, detect the mechanical microenvironment to guide PSC migration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10769407PMC
http://dx.doi.org/10.1101/2023.12.22.572956DOI Listing

Publication Analysis

Top Keywords

psc durotaxis
16
trpc1 trpv4
12
ion channels
12
pancreatic stellate
8
stellate cells
8
stiffness gradient
8
mechanosensitive ion
8
channels piezo1
8
psc migration
8
durotaxis
6

Similar Publications

Pancreatic stellate cells (PSCs) are primarily responsible for producing the stiff tumor tissue in pancreatic ductal adenocarcinoma (PDAC). Thereby, PSCs generate a stiffness gradient between the healthy pancreas and the tumor. This gradient induces durotaxis, a form of directional cell migration driven by differential stiffness.

View Article and Find Full Text PDF

Substrate Rigidity Controls Activation and Durotaxis in Pancreatic Stellate Cells.

Sci Rep

May 2017

Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom.

Pancreatic Ductal Adenocarcinoma (PDAC) is an aggressive malignancy characterised by the presence of extensive desmoplasia, thought to be responsible for the poor response of patients to systemic therapies. Pancreatic stellate cells (PSCs) are key mediators in the production of this fibrotic stroma, upon activation transitioning to a myofibroblast-like, high matrix secreting phenotype. Given their importance in disease progression, characterisation of PSC activation has been extensive, however one aspect that has been overlooked is the mechano-sensing properties of the cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!