Niosomes represent vesicular carriers capable of encapsulating both hydrophobic and hydrophilic drugs within their inner core or bilayer shell. They are typically composed of non-ionic synthetic surfactants such as sorbitan monostearate (Span60) with the addition of cholesterol (Chol). The physical properties and stability of niosomal vesicles strongly depend on the composition of their bilayers, which plays a significant role in determining the efficiency of drug encapsulation and release in drug delivery systems. In this study, we have explored the interactions between melatonin (Mel) molecules and the niosome bilayer, as well as their resulting physical properties. Molecular dynamics simulations were employed to investigate melatonin-inserted niosome bilayers, both with and without the inclusion of cholesterol. The simulation results revealed that cholesterol notably influences the location of melatonin molecules within the niosome bilayers. In the absence of cholesterol, melatonin tends to occupy the region around the Span60 tail groups. However, in the presence of cholesterol, melatonin is found in the vicinity of the Span60 head groups. Melatonin molecules in niosome bilayers without cholesterol exhibit a more ordered orientation when compared to those in bilayers containing 50 mol% cholesterol. The bilayer structure of the Span60/Mel and Span60/Chol/Mel systems exhibited a liquid-disordered phase (). In contrast, the Span60/Chol bilayer system displays a liquid-ordered phase () with less fluidity. This study reveals that melatonin induces a disorderly bilayer structure and greater lateral expansion, whereas cholesterol induces an orderly bilayer structure and a more condensed effect. Cholesterol plays a crucial role in condensing the bilayer structure with stronger interactions between Span60 and cholesterol. The addition of 50 mol% cholesterol in the Span60 bilayers not only enhances the stability and rigidity of niosomes but also facilitates the easier release of melatonin from the bilayer membranes. This finding is particularly valuable in the context of preparing niosomes for drug delivery systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10768803PMC
http://dx.doi.org/10.1039/d3ra07564hDOI Listing

Publication Analysis

Top Keywords

niosome bilayers
16
bilayer structure
16
melatonin molecules
12
molecules niosome
12
cholesterol
11
melatonin
8
molecular dynamics
8
bilayer
8
physical properties
8
drug delivery
8

Similar Publications

Niosomal Encapsulation of Anti-Cancer Peptides: A Revolutionary Strategy in Cancer Therapy.

Curr Pharm Biotechnol

January 2025

Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science & Technology, CHARUSAT At- Changa, Dist- Anand, Ta- Petlad, Pin-388421.

Cancer treatment has evolved significantly over the years, incorporating a range of modalities including surgery, radiation, chemotherapy, and immunotherapy. However, challenges such as drug resistance, systemic toxicity, and poor targeting necessitate innovative approaches. Peptides have gained attention in cancer therapy due to their specificity, potency, and ability to modulate various biological pathways.

View Article and Find Full Text PDF

We performed all-atom and coarse-grained simulations of lipid bilayer mixtures of the unsaturated lipid DOPC, with saturated lipids having the same 18-carbon acyl tails and different headgroups, to understand their mechanical properties. The secondary lipids were DSPG, DSPA, DSPS, DSPC, and DSPE. The DOPC:DSPG system with 65:35 molar ratio was the softest, with area compressibility modulus ∼ 22% smaller than the pure DOPC value.

View Article and Find Full Text PDF

Liposomes are employed for the delivery of molecular cargo in several classes of systems. For instance, the embedding of loaded liposomes in polymeric fibrous scaffolds has enabled the creation of hybrid materials that mimic biological membranes. Liposomes with unmodified surfaces have been predominantly integrated into fibers, which leads to instabilities due to interfacial incompatibility.

View Article and Find Full Text PDF

Our previous study revealed that lipid flip-flop inducing phytochemicals from Gymnema sylvestre increase membrane permeability of antimicrobials in S. aureus. However, their lipid flipping and membrane permeabilizing effect on methicillin resistant S.

View Article and Find Full Text PDF

NIR Triggered Bionic Bilayer Membrane-Encapsulated Nanoparticles for Synergistic Photodynamic, Photothermal and Chemotherapy of Cervical Cancer.

Int J Nanomedicine

January 2025

State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi, 830011, People's Republic of China.

Purpose: A synergistic treatment strategy of phototherapy and chemotherapy has been shown to improve efficacy and offer unique advantages over monotherapy. The purpose of this study is to explore a new nanocarrier system with liposome as the inner membrane and erythrocyte membrane as the outer membrane, which aims to realize the leak-free load of phototherapy drug indocyanine green (ICG) and chemotherapy drug doxorubicin (DOX), prolong the circulation time in vivo and improve the therapeutic effect.

Patients And Methods: In this study, bilayer membrane-loaded ICG and DOX nanoparticles (RBC@ICG-DOX NPs) were prepared and characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!