A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cyclic fatigue of a repaired 4 YSZ ceramic: Effect of the repair protocol on the adhesive and mechanical behavior. | LitMetric

Objective: To evaluate the effect of different surface treatments on the morphology, shear bond, and flexural fatigue strength of a repaired translucent zirconia.

Methods: Monolithic disc-shaped specimens of translucent zirconia were prepared and ground to simulate repair areas. Four groups underwent different treatments: Air-MDP (air-abrasion with alumina particles and 10-MDP primer), -Sil (silica-coated alumina particles with MDP-containing silane), -MDP (silica coating with 10-MDP primer), and Uni adhe (universal adhesive). After roughness measurements and treatments, repairs were done using resin composite. Shear bond and flexural (n = 15) fatigue tests were performed. Surface topography, interfacial analysis, fractographic, and finite element analysis were conducted.

Results: The zirconia roughness was similar between the groups, however, the surface topography was modified according to the surface treatments. -Sil generated higher and more stable bond strength values (20.69 MPa) between translucent zirconia and resin composite when compared to Uni adhe (15.75 MPa) considering the fatigue bond strength scenario, while it was similar to -MDP (17.70 MPa) and Air-MDP (18.97 MPa). Regarding the mechanical behavior, -Sil (680.83 MPa) also showed higher and significantly different fatigue strength when compared to Uni adhe (584.55 MPa), while both were similar to -MDP (634.22 MPa) and Air-MDP (641.86 MPa).

Conclusion: The association of mechanical and chemical approaches is essential for long-term bond strength and optimized mechanical behavior, being air-abrasion protocols and the use of silane and/or MDP-based primers suitable for zirconia repair protocols. It was found that relying solely on a universal adhesive was not as effective as other options available.

Clinical Significance: The surface treatment of repair protocols affects translucent zirconia's morphology. To enhance fatigue behavior in repaired monolithic zirconia, air abrasion is crucial. Exclusive use of a universal adhesive is less effective than other choices. A primer containing silane/MDP holds the potential for stable bond strength and optimized mechanical performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767202PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e23709DOI Listing

Publication Analysis

Top Keywords

bond strength
16
mechanical behavior
12
uni adhe
12
universal adhesive
12
surface treatments
8
shear bond
8
bond flexural
8
flexural fatigue
8
fatigue strength
8
translucent zirconia
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!