AI Article Synopsis

  • Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of cancer-related deaths by 2030, with very low overall survival rates of less than 10%.
  • Despite advancements in surgery and chemotherapy, many patients face limited treatment options, leading to interest in local ablative techniques that improve local tumor control and survival for locally advanced pancreatic cancer (LAPC).
  • These local ablations not only reduce tumor size but also stimulate antitumor immune responses, which may help in preventing or treating metastases, making them a potential therapeutic strategy for metastatic PDAC.

Article Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease, projected to rank as the second most prevalent cause of cancer-related mortality by 2030. Despite significant progress in advances in surgical techniques and chemotherapy protocols, the overall survival (OS) remains to be less than 10 % for all stages combined. In recent years, local ablative techniques have been introduced and utilized as additional therapeutic approaches for locally advanced pancreatic cancer (LAPC), with promising results with respect to local tumor control and OS. In addition to successful cytoreduction, there is emerging evidence that local ablation induces antitumor immune activity that could prevent or even treat distant metastatic tumors. The enhancement of antitumor immune responses could potentially make ablative therapy a therapeutic option for the treatment of metastatic PDAC. In this review, we summarize current ablative techniques used in the management of LAPC and their impact on systemic immune responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10767140PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e23551DOI Listing

Publication Analysis

Top Keywords

antitumor immune
12
immune responses
12
local ablative
8
pancreatic cancer
8
ablative techniques
8
local
4
ablative therapies
4
therapies antitumor
4
immune
4
responses pancreatic
4

Similar Publications

CD73, an ectoenzyme responsible for adenosine production, is often elevated in immuno-suppressive tumor environments. Inhibition of CD73 activity holds great promise as a therapeutic strategy for CD73-expressing cancers. In this study, we have developed a therapeutic anti-human CD73 antibody cocktail, HB0045.

View Article and Find Full Text PDF

Inflammasomes are defense complexes that utilize cytokines and immunogenic cell death (ICD) to stimulate the immune system against pathogens. Inspired by their dual action, we present cytokine-armed pyroptosis as a strategy for boosting immune response against diverse types of tumors. To induce pyroptosis, we utilize designed tightly regulated gasdermin D variants comprising different pore-forming capabilities and diverse modes of activation, representing a toolbox of ICD inducers.

View Article and Find Full Text PDF

Introduction: Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy by enhancing the antitumor immune response. This case describes an 80-year-old male with synchronous multiple primary malignancies (MPMs), including lung metastatic hepatocellular carcinoma (HCC), and non-small cell lung carcinoma (NSCLC), and brain metastatic urothelial carcinoma, who was treated with dual ICI therapy.

Case Presentation: The patient, with a history of diabetes, hypertension, dyslipidaemia, well-differentiated neuroendocrine duodenal tumors and micronodular exogenous cirrhosis (Child-Pugh class A), presented with a non-invasive bladder carcinoma (pT1N0M0) resected endoscopically in December 2022.

View Article and Find Full Text PDF

Background: Melanoma cells frequently dedifferentiate in response to inflammation which can increase responses to certain cytokines. Interferon-γ (IFNγ) is an integral part of the anti-tumor immune response and can directly induce both differentiational changes and expression of immunosuppressive proteins in melanoma cells. How the differentiation status of melanoma cells affects IFNγ responses remains unclear.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs), including those targeting PD-1, are currently used in a wide range of tumors, but only 20-40% of patients achieve clinical benefit. The objective of our study was to find predictive peripheral blood-based biomarkers for ICI treatment.

Methods: In 41 patients with advanced malignant melanoma (MM) and NSCLC treated with PD-1 inhibitors, we analyzed peripheral blood-based immune subsets by flow cytometry before treatment initialization and the second therapy dose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!