In this work, a novel enhanced model of the thermophysical characteristics of hybrid nanofluid is introduced. An innovative kind of fluid called hybrid nanofluid has been engineered to increase the heat transfer rate of heat and performance of thermal system. A growing trend in scientific and industrial applications pushed researchers to establish mathematical models for non-Newtonian fluids. A parametric study on theheat transfer and fluid flow of a Williamson hybrid nanofluid based on AA7075-AA7072/Methanol overincessantly moving thin needle under the porosity, Lorentz force, and non-uniform heat rise/fallis performed. Due to similarity variables, the partial differential equations governing the studied configuration undergo appropriate transformation to be converted into ordinary differential equations. The rigorous built-in numerical solver in bvp4c MATLAB has been employed to determine the numerical solutions of the established non-linear ordinary differential equations. It is worthy to note that velocity declines for both AA7075/Methanol nanofluid and AA7075- AA7072/Methanol hybrid nanofluid, but highervelocitymagnitudes occur for theAA7075/Methanol whilethe Williamson fluid parameters increased. It is alsoconcluded that as the porosity parameter isincreased, the flow intensity decreases gradually. It is worthy to note that for both non-uniform heat-rise and fall parameters, the temperature of the fluid gets stronger. Mounting valuesof needle thickness parameter leads to reduction in fluid speed and temperature. It is noticedthat as volume fractions of both types of nanoparticles are augmented then fluidvelocity and temperature amplify rapidly. A Comparison of current and published results is performed to ensure the validity of the established numerical model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10770486 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e23588 | DOI Listing |
Comput Methods Biomech Biomed Engin
January 2025
Department of Clinical Surgery, Cty Clin Emergency Hosp, Sibiu, Romania.
This study examines heat transfer and nanofluid-enhanced blood flow behaviour in stenotic arteries under inflammatory conditions, addressing critical challenges in cardiovascular health. The blood, treated as a Newtonian fluid, is augmented with gold nanoparticles to improve thermal conductivity and support drug delivery applications. A hybrid methodology combining finite element method (FEM) for numerical modelling and artificial neural networks (ANN) for stability prediction provides a robust analytical framework.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Background: The development of heat transfer devices used for heat conversion and recovery in several industrial and residential applications has long focused on improving heat transfer between two parallel plates. Numerous articles have examined the relevance of enhancing thermal performance for the system's performance and economics. Heat transport is improved by increasing the Reynolds number as the turbulent effects grow.
View Article and Find Full Text PDFSci Rep
January 2025
Renewable Energy Research Group, Isfahan, Iran.
The performance of nanofluids is largely determined by their thermophysical properties. Optimizing these properties can significantly enhance nanofluid performance. This study introduces a hybrid strategy based on computational intelligence to determine the optimal conditions for ternary hybrid nanofluids.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Materials Technologies, Faculty of Materials Engineering, Silesian University of Technology, 44-100, Gliwice, Poland.
Int J Biol Macromol
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Harnessing ionic gradients to generate electricity has inspired the development of nanofluidic membranes with charged nanochannels for osmotic energy conversion. However, achieving high-performance osmotic energy output remains elusive due to the trade-off between ion selectivity and nanochannel membrane permeability. In this study, we report a homogeneous nanofluidic membrane, composed of sulfonated nanoporous carbon (SPC) and TEMPO-oxidized cellulose nanofibers (T-CNF), engineered to overcome these limitations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!