Mining activities in the Zambian Copperbelt Province have led to the release of heavy metal-containing waste, causing contamination in nearby areas. Despite this environmental challenge, limited knowledge exists regarding the mycobiota in copper mine sites. This study investigates fungal community structure in copper(Cu) and cobalt (Co) contaminated soils around decommisioned dams in Kitwe. Metagenomic analysis of the ITSF1 gene amplicons was used for the purpose. The composition of soil fungal communities was characterized, and the findings revealed significant insights. At the phylum level, dominated the fungal profiles in the tailings (64.59%), followed by (21.30%), (4.53%), and (0.0275%). Several fungal genera, including , P, and , were more abundant in contaminated tailings soils, suggesting their potential in leaching, absorbing, and transforming heavy metals. In contrast, the reference soil at Mwekera National Forest exhibited different dominance patterns with four fungal phyla identified, with and dominating most samples. , known for forming arbuscular mycorrhizae with plants, were found in contaminated soils, while , which can serve ecological roles in various ecosystems, were also present. Notable fungal species such as , and demonstrated resilience to Cu and Co, the primary contaminants in the Copperbelt.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10770708PMC
http://dx.doi.org/10.1016/j.dib.2023.109951DOI Listing

Publication Analysis

Top Keywords

cobalt contaminated
8
contaminated soils
8
fungal
6
data fungal
4
fungal abundance
4
abundance diversity
4
diversity copper
4
copper cobalt
4
contaminated
4
contaminated tailing
4

Similar Publications

Biosorption of cobalt (II) from an aqueous solution over acid modified date seed biochar: an experimental and mass transfer studies.

Environ Sci Pollut Res Int

January 2025

Department of Chemical Engineering, Zakir Hussain College of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.

Water pollution because of the presence of heavy metals remains a serious worry. The present work demonstrates the exclusion of cobalt ion (or Co(II)) from water using novel and cost-effective biosorbents. Initially, the biosorbent was chemically modified using orthophosphoric acid and then subjected to calcination to result acid modified date seed biochar (AMDB).

View Article and Find Full Text PDF

Self-powered photoelectrochemical sensor based on molecularly imprinted polymer-coupled CBFO photocathode and AgS/SnS photoanode for ultrasensitive dimethoate sensing.

Anal Chim Acta

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China. Electronic address:

Dimethoate (DIM) is one of the most extensively applied organophosphorus pesticides (OPs), which is used to boost farm productivity due to its high insecticidal efficacy. However, the excessive use of DIM can result in the extensive contamination of soil, groundwater and food. Monitoring of DIM in environmental and food samples is crucial in view of its potential health risks and environmental hazards from excessive residues.

View Article and Find Full Text PDF

Improving Ni Tolerance of Arabidopsis by Overexpressing Bacterial Gene Encoding a Membrane-Bound Exporter of Ni.

Int J Mol Sci

December 2024

Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

The prerequisite for breeding a plant to be used in phytoremediation is its high tolerance to grow normally in soil contaminated by certain heavy metals. As mechanisms of plant uptake and transport of nickel (Ni) are not fully understood, it is of significance to utilize exogenous genes for improving plant Ni tolerance. In this study, from encoding an exporter of Ni and cobalt was overexpressed constitutively in , and the performance of transgenic plants was assayed under Ni stress.

View Article and Find Full Text PDF

Biosorption performance toward Co(II) and Cd(II) by irradiated Fusarium solani biomass.

Environ Geochem Health

January 2025

Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.

Fusarium solani biomass plays a significant role in water pollution remediation due to its ability to sequester heavy metals, particularly cobalt (Co(II)) and cadmium (Cd(II)), which pose severe environmental and health risks. This study aimed to identify fungi from sewage-contaminated sites and evaluate their efficiency in absorbing and reducing Co(II) and Cd(II) ions. The biosorption potential of irradiated Fusarium solani biomass for removing Co(II) and Cd(II) ions from aqueous solutions was investigated.

View Article and Find Full Text PDF

Nano-island-encapsulated cobalt single-atom catalysts for breaking activity-stability trade-off in Fenton-like reactions.

Nat Commun

January 2025

CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.

Single-atom catalysts (SACs) have been increasingly acknowledged for their performance in sustainable Fenton-like catalysis. However, SACs face a trade-off between activity and stability in peroxymonosulfate (PMS)-based systems. Herein, we design a nano-island encapsulated single cobalt atom (Co-ZnO) catalyst to enhance the activity and stability of PMS activation for contaminant degradation via an "island-sea" synergistic effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!