Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To assess the health impact of inhaled aerosols, it is necessary to understand aerosol dynamics and the associated dosimetry in the human respiratory tract. Although several studies have measured or simulated the dosimetry of aerosol constituents, the respiratory tract focus areas have been limited. In particular, the aerosols generated from tobacco products are complex composites and simulating their dynamics in the respiratory tract is challenging. To assess the dosimetry of the aerosol constituents of tobacco products, we developed a revised version of the Multiple-Path Particle Dosimetry (MPPD) model, which employs (1) new geometry based on CT-scanned human respiratory tract data, (2) convective mixing in the oral cavity and deep lung, and (3) constituent partitioning between the tissue and air, and clearance. The sensitivity analysis was conducted using aerosols composed of four major constituents of electronic cigarette (EC) aerosols to investigate the parameters that have a significant impact on the results. In addition, the revised model was run with 4 and 10 constituents in ECs and conventional cigarettes (CCs), respectively. Sensitivity analysis revealed that the new modeling and the physicochemical properties of constituents had a considerable impact on the simulated aerosol concentration and dosimetry. The simulations could be carried out within 3 min even when 10 constituents of CC aerosols were analyzed simultaneously. The revised model based on MPPD is an efficient and easy-to-use tool for understanding the aerosol dynamics of CC and EC constituents and their effect on the human body.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cnm.3796 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!