A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Boosting the Performance of PEDOT:PSS Based Electronics Via Ionic Liquids. | LitMetric

Boosting the Performance of PEDOT:PSS Based Electronics Via Ionic Liquids.

Adv Mater

College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, China.

Published: March 2024

The conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) offers superior advantages in electronics due to its remarkable combination of high electrical conductivity, excellent biocompatibility, and mechanical flexibility, making it an ideal material among electronic skin, health monitoring, and energy harvesting and storage. Nevertheless, pristine PEDOT:PSS films exhibit limitations in terms of both low conductivity and stretchability; while, conventional processing techniques cannot enhance these properties simultaneously, facing the dilemma that highly conductive interconnected PEDOT:PSS domains are susceptible to tensile strain. Via modifying PEDOT:PSS with ionic liquids (ILs), not only a synergistic enhancement of the electrical and mechanical properties can be achieved but also the requirements for the printable bioelectronic are satisfied. In this comprehensive review, the task of providing a thorough examination of the mechanisms and applications of ILs as modifiers for PEDOT:PSS is undertaken. First, the theoretical mechanisms governing the interactions between ILs and PEDOT:PSS are discussed in detail. Then, the enhanced properties and the elucidation of the underlying mechanisms achieved through the incorporation of ILs are reviewed. Next, specific applications of ILs-modified PEDOT:PSS relevant to bioelectronic devices are presented. Last, there is a concise summary and a discussion regarding the opportunities and challenges in this exciting field.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202310973DOI Listing

Publication Analysis

Top Keywords

pedotpss
8
ionic liquids
8
boosting performance
4
performance pedotpss
4
pedotpss based
4
based electronics
4
electronics ionic
4
liquids conducting
4
conducting polymer
4
polymer poly34-ethylenedioxythiophenepolystyrenesulfonate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!