A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Donor-Derived Engineered Microvessels for Cardiovascular Risk Stratification of Patients with Kidney Failure. | LitMetric

Cardiovascular disease is the cause of death in ≈50% of hemodialysis patients. Accumulation of uremic solutes in systemic circulation is thought to be a key driver of the endothelial dysfunction that underlies elevated cardiovascular events. A challenge in understanding the mechanisms relating chronic kidney disease to cardiovascular disease is the lack of in vitro models that allow screening of the effects of the uremic environment on the endothelium. Here, a method is described for microfabrication of human blood vessels from donor cells and perfused with donor serum. The resulting donor-derived microvessels are used to quantify vascular permeability, a hallmark of endothelial dysfunction, in response to serum spiked with pathophysiological levels of indoxyl sulfate, and in response to serum from patients with chronic kidney disease and from uremic pigs. The uremic environment has pronounced effects on microvascular integrity as demonstrated by irregular cell-cell junctions and increased permeability in comparison to cell culture media and healthy serum. Moreover, the engineered microvessels demonstrate an increase in sensitivity compared to traditional 2D assays. Thus, the devices and the methods presented here have the potential to be utilized to risk stratify and to direct personalized treatments for patients with chronic kidney disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168887PMC
http://dx.doi.org/10.1002/smll.202307901DOI Listing

Publication Analysis

Top Keywords

chronic kidney
12
kidney disease
12
engineered microvessels
8
cardiovascular disease
8
endothelial dysfunction
8
uremic environment
8
response serum
8
patients chronic
8
disease
5
donor-derived engineered
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!